บทคัดย่อ
การใช้ถ่านกัมมันต์ (Activated carbon; AC) เพื่อดูดซับไอปรอทและมลพิษทางอากาศชนิดอื่นๆ เช่นสารอินทรีย์ระเหยง่าย ไดออกซิน และฟิวแรน ในอุตสาหกรรมที่มีการใช้เชื้อเพลิงถ่านหิน น้ำมัน และก๊าซธรรมชาติเป็นที่นิยมอย่างมาก (Liu และคณะ, 2010) เนื่องจากมีราคาถูก ง่ายต่อการใช้งาน และให้ประสิทธิภาพการดูดซับค่อนข้างดี อย่างไรก็ตาม เทคโนโลยีที่ใช้ในการควบคุมไอปรอทนั้นมีหลากหลาย ทั้งนี้ขึ้นอยู่กับวัตถุประสงค์และรูปแบบการใช้งาน บทความนี้จึงได้รวบรวมข้อมูลแหล่งกำเนิดไอปรอทและวิธีควบคุมไอปรอทด้วยถ่านกัมมันต์ทั้งในระดับที่ยังเป็นงานวิจัยและระดับการใช้งานจริงไว้ให้ทราบพอสังเขป
การบำบัดปรอทที่ปนเปื้อนในอากาศด้วยถ่านกัมมันต์
1.บทนำ
ไอปรอทมาได้จากหลายแหล่งกำเนิดซึ่งส่วนใหญ่เป็นแหล่งกำเนิดที่มาจากกิจกรรมของมนุษย์ โดยเฉพาะการทำเหมือง การเผาถ่านหิน การกลั่นและการใช้น้ำมันและก๊าซธรรมชาติ แหล่งกำเนิดเหล่านี้เป็นสาเหตุการเพิ่มขึ้นของการเคลื่อนย้ายปรอทไปสู่สิ่งแวดล้อม โดยมีการสะสมในบรรยากาศ ดิน แหล่งน้ำจืด และมหาสมุทร การปลดปล่อยปรอทจากกิจกรรมของมนุษย์นี้เริ่มมาตั้งแต่ปี 1800 ในยุคปฏิวัติอุตสาหกรรมซึ่งใช้ถ่านหินเป็นเชื้อเพลิงหลัก ปรอทจึงแพร่กระจายไปสู่สิ่งแวดล้อมนับตั้งแต่ตอนนั้น United Nations Environment Programme (UNEP) ได้รายงานการสำรวจการปลดปล่อยปรอทสู่บรรยากาศในระดับโลกว่ามีปริมาณรวมสูงถึง 1,960 ตันในปี 2010 โดยปรอทได้ถูกปลดปล่อยออกมามากที่สุดจากการทำเหมืองทองขนาดเล็ก 727 ตัน และรองลงมาคือการเผาไหม้ถ่านหิน 474 ตัน ซึ่งภูมิภาคที่มีการปลดปล่อยปรอทสูงที่สุดคือ เอเชียตะวันออกและตะวันออกเฉียงใต้ 777 ตัน ซึ่งมีประเทศไทยรวมอยู่ในการปลดปล่อยนี้ด้วย (UNEP, 2013)
2. แหล่งกำเนิดของปรอทที่ปนเปื้อนในอากาศ
ปรอทในของเสียจากผลิตภัณฑ์อุปโภคบริโภค
รูปที่ 1 ตัวอย่างขยะที่มีปรอทเป็นส่วนประกอบ
(ที่มา: ecowastecoalition.blogspot.com; quinterecycling.org)
(ที่มา: http://app.nccs.gov.sg) | (ที่มา: www.earthsci.org) |
ปรอทจากการเผาไหม้ถ่านหิน 1) อนุภาคปรอท (Hgp) เช่น HgCl2 HgO HgSO4 HgS ซึ่งถูกดูดจับได้ง่ายด้วย อุปกรณ์ควบคุมมลพิษทางอากาศชนิดต่างๆ เช่น เครื่องดักฝุ่นแบบไฟฟ้าสถิต (Electrostatic precipitator) และเครื่องเก็บฝุ่นแบบถุงกรอง (Fabric filter)
2) ไอปรอทที่ถูกออกซิไดซ์ (Hg2+) มีปริมาณค่อนข้างมาก ปรอทลักษณะนี้ละลายน้ำได้ดีจึงถูกดูดจับได้ง่ายเช่นกันด้วย เครื่องกำจัดก๊าซซัลเฟอร์ไดออกไซด์แบบเปียก (Wet scrubber flue gas desulfurization ) ทำให้ไม่ออกมากับก๊าซทิ้ง
3) ไอปรอท (Hg0) มีปริมาณมากที่สุดในก๊าซทิ้ง เนื่องจากไม่สามารถถูกดักจับด้วยอุปกรณ์ควบคุมมลพิษ (Luo และคณะ, 2013) ปรอทในลักษณะนี้จึงสามารถแพร่กระจายในบรรยากาศไปได้โดยง่าย และคงอยู่นานถึง 0.5-2 ปี (Galbreath และ Zygarlicke, 2000)
ทั้งนี้ สัดส่วนปรอทในก๊าซทิ้งจากการเผาไหม้ถ่านหินจะมีมากหรือน้อยขึ้นอยู่กับ ชนิดของถ่านหิน ความเข้มข้นของปรอทในถ่านหินวัตถุดิบ สภาวะการเผาไหม้ และอุปกรณ์กำจัดมลพิษทางอากาศที่ใช้
3. แนวทางการบำบัดไอปรอทที่ปนเปื้อนในอากาศด้วยถ่านกัมมันต์
ถ่านกัมมันต์ (Activated carbon) เป็นตัวดูดซับประเภทหนึ่งที่ถูกทดสอบในระดับห้องปฏิบัติการและพิสูจน์ในระดับการใช้งานเชิงพาณิชย์แล้วว่าสามารถกำจัดไอปรอทในก๊าซที่มีการปนเปื้อนได้ โดยเฉพาะอย่างยิ่งก๊าซจากการเผาไหม้เชื้อเพลิงถ่านหินและก๊าซธรรมชาติในโรงงานอุตสาหกรรมและโรงไฟฟ้า โดยทั่วไปแล้วอุณหภูมิและความเข้มข้นของไอปรอทภายในระบบมีผลต่อการความสามารถในการดูดซับของถ่านกัมมันต์เป็นอย่างมาก นอกจากนี้ลักษณะโครงสร้าง พื้นที่ผิว และขนาดอนุภาพของถ่านกัมมันต์ก็มีอิทธิพลต่อการดูดซับไอปรอทเช่นกัน น้ำหนักของถ่านกัมมันต์ต่อไอปรอทประมาณ 2,000-15,000 ในการทดสอบภาคสนาม สามารถกำจัดปรอทได้ 25-95% (Liu และคณะ, 2010) ระหว่างการเกิดกระบวนการดูดซับไอปรอท การแพร่ของไอปรอทจากก๊าซทิ้งไปสู่ผิวของของแข็งของถ่านกัมมันต์ถูกขัดขวางโดยกระบวนการออกซิเดชันของไอปรอทและลดความสามารถในการดูดซับไอปรอทของถ่านกัมมันต์ลง ซึ่งสามารถแก้ไขได้โดยการลดขนาดอนุภาคของถ่านกัมมันต์ลงเพื่อเพิ่มการกระจายตัวของถ่านกัมมันต์เอง สิ่งนี้จะช่วยเพิ่ม Mass transfer และเพิ่มการดูดซับไอปรอทได้ในที่สุด
ปัจจัยด้านพื้นที่ผิวของถ่านอาจมีผลต่อการดูดซับไอปรอทไม่มากเมื่อเทียบกับปัจจัยของขนาดของอนุภาคถ่านกัมมันต์ การศึกษาการดูดซับไอปรอทของถ่านกัมมันต์เชิงพาณิชย์#1 ซึ่งมีพื้นที่ผิว 900 m2/g และถ่านกัมมันต์เชิงพาณิชย์#2 ซึ่งมีพื้นที่ผิว 550 m2/g พบว่าถ่านกัมมันต์เชิงพาณิชย์#2 สามารถดูดซับไอปรอทได้ 115 μg/g ในขณะที่ ถ่านกัมมันต์เชิงพาณิชย์#1 สามารถดูดซับไอปรอทได้น้อยกว่าคือ 20 μg/g (Johnson และคณะ, 2008) นอกจากนี้ยังพบว่า เมื่อมีการเติมซัลเฟอร์ลงไปที่ผิวของถ่านกัมมันต์ ไอปรอทจะถูกดูดซับได้เพิ่มขึ้น 20 กว่าเท่า
ถ่านกัมมันต์ที่ผลิตจากวัสดุเหลือใช้ทางการเกษตรมีความนิยมอย่างมาก โดยถ่านกัมมันต์ที่ได้ส่วนใหญ่ถูกนำไปประยุกต์ใช้กับการดูดซับสารอินทรีย์ที่ปนเปื้อนในน้ำและในอากาศ Skodras และคณะ (2007) ศึกษาการเพิ่มประสิทธิภาพการดูดซับไอปรอทด้วยถ่านกัมมันต์จากยางรถยนต์ใช้แล้วและชีวมวลเช่น ไม้สน ไม้โอ๊ค กากเมล็ดมะกอก ในสภาวะต่าง ๆ จากนั้นนำถ่านกัมมันต์ที่ได้ไปทดสอบการดูดซับไอปรอทซึ่งพบว่า ถ่านกัมมันต์ที่เตรียมจากกากเมล็ดมะกอกและปรับปรุงสภาพผิวด้วย KOH ให้ความจุการดูดซับไอปรอทได้มากที่สุด รองลงมาคือ ถ่านกัมมันต์ที่เตรียมจากไม้สน ไม้โอ๊ค และยางรถยนต์ใช้แล้วตามลำดับ
ผลวิเคราะห์โครงสร้างโครงผลึก (X-ray Diffractrometer, XRD) ของ Ag/GAC ก่อนและหลังการดูดซับแสดงในรูปที่ 6 ยืนยันความเป็นโลหะของ Ag ที่เกิดขึ้น และพบปรอทในรูป Ag2Hg3 Hg และ HgO บนตัวดูดซับ โดยแสดงลักษณะที่เด่นชัดใน 15%Ag/GAC
รูปที่ 4 ความสามารถในการดูดซับไอปรอทของ GAC และ TiO2 ที่เติมด้วย Ag
(Khunphonoi และคณะ, 2015)
รูปที่ 6 XRD patterns ของ GAC ที่เติมด้วย Ag เปรียบเทียบก่อนและหลังดูดซับไอปรอท
(Khunphonoi และคณะ, 2015)
รูปที่ 7 ผลการดูดซับไอปรอทของ Activated carbon (Darco G60) ที่เติมด้วย AgNO3
(Karatza และคณะ, 2011)
รูปที่ 8 ปริมาณการดูดซับไอปรอทต่อปริมาณวัสดุดูดซับ (Johnson และคณะ, 2008)
ถึงแม้ถ่านกัมมันต์จะมีการศึกษาวิจัยและการใช้งานจริงเชิงพาณิชย์ (Feeley และคณะ, 2005; Nelson และคณะ, 2011; UNEP, 2010) แต่ความสามารถในการดูดซับไอปรอทนั้นสามารถทำได้แค่ 90% ที่อัตราการฉีดผงถ่านกัมมันต์มากกว่า 50 kg/Million actual m3 และบางกรณี การดูดซับไอปรอทก็ทำได้ไม่ถึง 90% (UNEP, 2010) โดยสำหรับโรงผลิตไฟฟ้าถ่านหินพบว่าต้นทุนของระบบอยู่ในช่วง 5-126 USD/KW ซึ่งประกอบด้วยค่าใช้จ่ายการติดตั้งไซโลที่ใช้จัดเก็บถ่านกัมมันต์ ระบบฉีดถ่านกัมมันต์ (Activated carbon injection; ACI) และเครื่องเก็บฝุ่นแบบถุงกรอง สำหรับดักจับถ่านกัมมันต์ อย่างไรก็ตาม ค่าใช้จ่ายหลักของระบบฉีดถ่านกัมมันต์ะอยู่ที่ค่าถ่านกัมมันต์และค่ากำจัดถ่านกัมมันต์ที่ใช้งานแล้ว (Nelson และคณะ, 2011) โดยน้ำหนักถ่านกัมมันต์ที่ใช้ต่อน้ำหนักไอปรอทที่ดักจับได้จะอยู่ในช่วงอย่างน้อย 2,000-15,000:1 ซึ่งได้ประสิทธิภาพการดูดซับ 25-95% (Liu และคณะ, 2010) 3,000-20,000:1 เพื่อให้ได้ประสิทธิภาพการดูดซับ 90% (Wilcox และคณะ, 2012) และในอีกการศึกษาหนึ่งคืออย่างน้อย 1,000:1 (Yudovich และ Ketris, 2005b) แสดงถึงการใช้ถ่านกัมมันต์ในปริมาณมาก ซึ่งส่งผลต่อการจัดหาถ่านกัมมันต์ สถานที่จัดเก็บ และค่าใช้จ่ายในการจำกัดถ่านกัมมันต์ที่ใช้งานแล้ว
การควบคุมและกำจัดไอปรอทด้วยถ่านกัมมันต์นั้นเป็นเทคนิคที่สามารถนำไปใช้ได้จริง โดยการปรับสภาพผิวและสารตัวเติมบนถ่านกัมมันต์สามารถเพิ่มประสิทธิภาพการดักจับไอปรอทได้มาก แต่ก็ยังมีข้อจำกัดหลายประการโดยเฉพาะเรื่องงบประมาณในการลงทุน ดังนั้นการพัฒนาเทคโนโลยีที่มีเป้าหมายเพื่อกำจัดไอปรอทพร้อมกับการลดต้นทุนมีความจำเป็นอย่างยิ่ง และควรมีการศึกษาแนวทางในการประยุกต์ใช้เทคโนโลยีดังกล่าวร่วมกับเทคโนโลยีควบคุมมลพิษที่ใช้งานอยู่ เพื่อเพิ่มประสิทธิภาพการกำจัดไอปรอท ลดปริมาณของเสีย และแก้ไขปัญหามลพิษจากการปลอดปล่อยปรอทสู่บรรยากาศอย่างยั่งยืน
ขอขอบคุณสำนักงานคณะกรรมการวิจัยแห่งชาติ (วช.) สำหรับทุนอุดหนุนโครงการวิจัยเรื่องการเตรียมถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรสำหรับการดูดซับไอปรอท และการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) สำหรับทุนอุดหนุนโครงการวิจัยเรื่องการพัฒนาวัสดุนาโนเพื่อดูดซับไอปรอทจากโรงไฟฟ้าถ่านหิน ขอขอบคุณสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักพัฒนาบัณฑิตศึกษาและวิจัยด้านวิทยาศาสตร์และเทคโนโลยี (สบว.) สำหรับทุนอุดหนุนโปรแกรมวิจัยเรื่องการจัดการสารพิษในอุตสาหกรรมเหมืองแร่
Chang, R., Dombrowski, K., Senior, C. 2008. Near and long term options for controlling mercury emissions from power plants. Power Plant Air Pollutant Mega Symposium, NETL, EPRI, EPA. Baltimore, MD.
http://quinterecycling.org
www.earthsci.org