การบำบัดสีย้อมผ้าจากน้ำเสีย โรงงานฟอกย้อมสิ่งทอด้วยจุลินทรีย์

สีย้อมเป็นบลพิษหลักของน้ำเสียจาก โรงจานแอกย้อบสี่งกอ กางบำบักน้ำเสีย กี่มีสีเป็นองค์ปร:กอบนี้สามารถกำเนินการ ไก้หลายวิธี ไม่ว่าจ:Iป็นการบำบักกางกายภาแ ทางเคมี ทางกายภาแ-เคมี และกางชีวภาแ อย่างไรก็ตาม การบำบักน้ำเสียกางชีวภาแ โกยอาศัยจุลิuกธีย์มีข้อไก้ปธียยบจธธการอึ่น ๆ ใน॥เง่ของค่าใช้จ่ายกี่ต่ากว่า ธ่งธโกยนัยเลัว การบำบักน้ำเสียจากโรงงานแอกย้อบสิ่งกอ กัวยว̄ธีทางชีวภาพไม่ใช่เรื่องใหม่ ॥ต่ปงะเก็น ที่น่าสนใจคือการพัญมนาออกเบบ ปรับปรุง รูปเוบบของร:บบบำบักน้ำเสียוเบบชีวภาพ ॥บบกั้งกลิ เพื่อน่าไปสู่การกำจักสีย้อมจาก น้ำเสียไก้อย่างสมบูรณ์ จนไม่เหลือความเป็น พิษr่อสิ่อ॥วกล้อมแล:สุขภาшของปร:ธาษน

บทนำ
อุตสาหกรรมที่มีบทบาทสำคัญต่อเศรษฐิกิจในหลายประเทศคืออุตสาหกรรมฟอกย้อมสิ่งทอ โดยกระบวนการ ย้อมผ้าเป็นกระบวนหลักที่ใช้สารเคมีประเภทสีย้อมและอุปโภคน้ำในปริมาณมาก ซึ่งเป็นผลให้เกิดน้ำเสียในปริมาณมาก เช่นกัน โดยน้ำเสียดังกล่าวมีลักษณะของสารแขวนลอยและสารอินทรีย์ละลายน้ำปริมาณสูงอยู่ในช่วง $43-140$ มิลลิกรัม ต่อลิตรและ $300-1,200$ มิลลิกรัมต่อลิตร ตามลำดับ ที่สำคัญน้ำเสียมีลักษณะมีสีซึ่งถือเป็นมลพิษหลักของน้ำเสียจาก โรงงานฟอกย้อมสิ่งทอก่อให้เกิดความน่ารังเกียจและสูญเสียภูมิทัศน์ มากไปกว่านั้น สีย้อมยังมีอันตรายต่อสุขภาพเนื่องจาก มีองค์ประกอบของสารก่อมะเร็ง อย่างไรก็ตามการกำจัดสีย้อมออกจากน้ำเสียยังถือเป็นปัญหาหลักของอุตสาหกรรมฟอกย้อม สิ่งทอ เนื่องจากสีย้อมเป็นสารคงตัวต่อแสง ความร้อน และย่อยสลายทางชีวภาพได้ยาก นอกจากนี้ มีการคาดคะเนว่า หากกระบวนการย้อมผ้าไม่มีประสิทธิผลมากพอจะส่งผลให้เกิดการปลดปล่อยสีย้อมออกมาพร้อมกับน้ำทิ้งคิดเป็น มากกว่าร้อยละ 50 สู่สิ่งแวดล้อม ซึ่งสีย้อมเพียง 1 มิลลิกรัมต่อลิตรก็สามารถส่งผลต่อสิ่งแวดล้อมทางน้ำในแง่ของ ความโปร่งใสและความรู้สึกสะอาดของน้ำ มากไปกว่านั้น สีย้อมยังเป็นพิษต่อพืชและสัตว์น้ำอีกด้วย

มลพิษของสีย้อม

สีย้อม เป็นสารเคมีที่สกัดจากน้ำมันปิโตรเลียมหรือถ่านหิน เมื่อน้ำมันปิโตรเลียมหรือถ่านหินผ่านการสกัดจะได้ สารไฮโดรคาร์บอนที่ไม่อิ่มตัว เช่น เบนซิน ไซลีน แอนทราซีน โทลูอีน แนฟทาลีน และพาราฟินซึ่งสารไฮโดรคาร์บอน เหล่านี้ จะถูกเปลี่ยนเป็นสีย้อมด้วยเทคนิคต่าง ๆ ซึ่งสีย้อมที่ผลิตขึ้นมามีหลายชนิดขึ้นอยู่กับความเหมาะสมกับเส้นใย และกระบวนการย้อมที่มีลักษณะแตกต่างกันไป สีซึ่งปรากฏออกมาทำให้ตามนุษย์ปกติมองเห็นได้เกิดจาก การเรียงตัว ของกลุ่มอะตอมประเภทหนึ่งภายในโมเลกุลของสีย้อม กลุ่มอะตอมที่กล่าวนี้เรียกกันว่า "โครโมฟอร์" ซึ่งมีอยู่ด้วยกัน 7 กลุ่ม คือ กลุ่มไนโตรโซ (Nitroso Group) กลุ่มไนโตร (Nitro Group) กลุ่มอะโซ (Azo Group) กลุ่มเอ็ททิลลีน (Ethylene Group) กลุ่มคาร์บอนิล (Carbonyl Group) กลุ่มคาร์บอนิล-ไนโตรเจน (Carbonyl-Nitrogen Group) และกลุ่มซัลเฟอร์ (Sulphur Group)

สีย้อมเป็นสารที่จัดได้ว่ามีความเป็นพิษต่ำ โดยไม่พบว่ามีอัตราการตายหรือเจ็บป่วยของผู้ที่ทำงานในโรงงาน ฟอกย้อมสูงกว่าบุคคลอาชีพอื่นแต่อย่างใด สีย้อมอาจเข้าสู่ร่างกายของผู้ใช้ได้ 3 ทางคือ ทางจมูกโดยการสูดดม ทางผิวหนัง โดยการสัมผัส และทางระบบทางเดินอาหาร โดยปนเข้าไปกับอาหารการกิน แต่ก็เป็นที่ทราบกันดีว่าสารวัตถุดิบที่ใช้ใน การสังเคราะห์สีย้อม มีจำนวนไม่น้อยที่มีความเป็นพิษสูงมากและมีหลายตัวเป็นสารก่อมะเร็ง เช่น 2 -naphthylamine และ benzidine เป็นต้น

ปัญหาสิ่งแวดล้อมที่เกิดจากสีย้อมในน้ำทิ้งจากโรงงาน สามารถสรุปได้ดังนี้ 1) ก่อให้เกิดความไม่สวยงามทาง ด้านทัศนียภาพ 2) ขัดขวางการเดินทางของแสง ซึ่งจำเป็นต่อการสังเคราะห์แสงของพืชน้ำ 3) ลดอัตราถ่ายเทออกซิเจน จากผิวหน้าสู่แหล่งน้ำ ทำให้ปริมาณออกซิเจนในน้ำลดต่ำลงกระทบต่อการดำรงชีวิตของสัตว์น้ำ 4) มีความเป็นพิษและ เป็นสารก่อมะเร็ง
ตรบําบับสียีอมาากน้ำสีย
กระบวนการในการบำบัดสีย้อมจากน้ำทิ้งโรงงานฟอกย้อมสิ่งทอนั้นมีที่นิยมใช้ ได้แก่ 1) กระบวนการทางเคมี เช่น วิธีโฟโตแคตตาไลซิส การออกซิเดชั่น 2) กระบวนการทางกายภาพ-เคมี เช่น การดูดซับบนวัสดุอินทรีย์หรืออนินทรีย์ 3) กระบวนการทางชีวภาพ เช่น การย่อยสลายด้วยจุลินทรีย์หรือเอนไซม์

การบำบัดสีย้อมโดยกระบวนการออกซิเดชั่นด้วยสารเคมีและการดูดซับถือได้ว่ามีประสิทธิภาพสูงมากกว่าร้อยละ 95 ตามประเภทของสีย้อม สารเคมี และตัวดูดซับนั้นๆ อย่างไรก็ตามค่าดำเนินการที่ค่อนข้างสูงและการเสื่อมสภาพของ

ตัวดูดซับหรือกากตะกอนเคมีที่ได้จากกระบวนการยังคงถือเป็นปัญหาที่เพิ่มต้นทุนของกระบวนการอยู่ ด้วยเหตุนี้ การบำบัด สีย้อมทางชีวภาพจึงได้รับความสนใจเนื่องด้วยมีค่าดำเนินการและปริมาณกากของเสียที่น้อยกว่า

การบำบัดสีย้อมจากน้ำเสียทางชีวภาพ

การบำบัดสีย้อมด้วยกระบวนการทางชีวภาพอาศัยการย่อยสลายโมเลกุลของสีย้อมผ้าด้วยจุลินทรีย์ ซึ่งจำแนก ได้เป็น 2 รูปแบบด้วยกัน คือ การย่อยสลายด้วยจุลินทรีย์ประเภทใช้อากาศและประเภทไม่ใช้อากาศ

การบำบัดสีย้อมจากน้ำเสียด้วยจุลินทรีย์ประเภทใช้อากาศ ส่วนใหญู่เกิดจากดูดซับทางชีวภาพบนเซลล์จุลินทรีย์ (Biosorption) เนื่องจากสีย้อมเป็นสารเคมีที่ย่อยสลายได้ยากภายใต้กระบวนการทางชีวภาพแบบใช้อากาศ โดยได้มีการ ศึกษาเปรียบเทียบการกำจัดค่าบีโอดีในน้ำเสีย 2 แหล่งด้วยกระบวนการทางชีวภาพแบบใช้อากาศ พบว่าอัตราการย่อยสลาย น้ำเสียที่มีสีย้อมเป็นองค์ประกอบ คิดเป็นร้อยละ 31 ในขณะที่อัตราการย่อยสลายน้ำเสียชุมชนคิดเป็นร้อยละ 92 ในระยะ เวลา 10 วันเท่ากัน นอกจากนี้ ได้มีการศึกษาการย่อยสลายของ $0-A m i n o a z o t o l u e n e ~ เ พ ื ่ อ ศ ึ ก ษ า ก ล ไ ก ก า ร ย ่ อ ย ส ล า ย ท า ง ~$ ชีวภาพของสีย้อมโดยจุลินทรียีประเภทใช้อากาศ พบว่าไม่สามารถระบุสารประกอบจากการย่อยสลายได้ พบเพียงปริมาณ ของสารประกอบเท่านั้น เนื่องจากปฏิกิริยาเกิดขึ้นอย่างรวดเร็วมาก ผู้ศึกษาจึงได้เสนอว่าการย่อยสลายน่าจะเกิดจากปฏิกิริยา ออกซิเดชั่น โดยความน่าจะเป็นของปฏิกิริยาออกซิเดชั่นภายใต้สภาวะใช้อากาศแสดงดังรูปที่ 1

รูปที่ 1 ความน่าจะเป็นของการย่อยสลาย o-Aminoazotoluene ภายใต้สภาวะใช้อากาศ
การย่อยสลายสีย้อมด้วยจุลินทรีย์ประเภทไม่ใช้อากาศนั้นได้มีการเสนอแนวคิดของการย่อยสลายสีย้อมภายใต้ ภาวะไร้อากาศด้วยจุลินทรียีไว้ว่า การย่อยสลายนี้มีความเกี่ยวข้องกับไซโตพลาสมิคเอ็นไซม์ (Cytoplasmic enzyme) เช่น กรณีของการย่อยสลายสีย้อมโครงสร้างอะโซ โดยไซโตพลาสมิคเอ็นไซม์ตัวนี้จะถูกเรียกว่า อะโซรีดักเตส (Azoreductase) โดยจะมีสารประกอบฟลาวิน (Flavin) เช่น FAD ทำหน้าที่เป็นโคเอนไซม์ โดย FAD จะถูกรีดิวซ์ ด้วยสาร NADH กลายเป็น FADH2 (Reduce Flavin Nucleotides) ซึ่งจะถ่ายทอดอิเล็กตอนให้กับพันธะอะโซของ สีย้อม $(\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{R})$ ส่งผลให้พันธะอะโซแตกออก เกิดการลดลงของสีนั่นเอง ดังนั้นอาจกล่าวได้ว่าการลดลงของสีย้อม ในน้ำเสียไม่ใช่การย่อยสลายโดยตัวสีย้อมเป็นสารให้อิเลคตรอนดังเช่นสารอินทรีย์ทั่ว ๆ ไป แต่กลับทำหน้าที่เป็นสาร ออกซิใดซ์สำหรับ FADH 2 ในการเปลี่ยนรูปกลับไปเป็นโคเอนไซม์ FAD ในระบบขนส่งอีเล็คตรอนต่อไป ดังแสดง ในรูปที่ 2

รูปที่ 2 สมมติฐูานกลไกการย่อยสลายสีย้อมโครงสร้างอะโซภายใต้สภาวะไร้อากาศ

อย่างไรก็ตาม เป็นที่ทราบกันดีว่าสีย้อมเมื่อถูกย่อยสลายด้วยจุลินทรีย์ภายใต้สภาวะไร้อากาศจะเปลี่ยนรูปเป็นสาร ประเภทอะโรมาติกเอมีน (Aromatic Amine) ซึ่งเป็นสารก่อมะเร็งและมีความเป็นพิษต่อจุลินทรีย์ประเภทไร้อากาศเอง แต่อย่างไรก็ตามสารประเภทอะโรมาติกเอมีนนี้สามารถปปลี่ยนรูปหรือย่อยสลาย่ได้อย่างสมบูรณ์ด้วยจุลินทรีย์ประเภทใช้อากาศ

ด้วยเหตุนี้ แนวคิดการพัฒนาปรับปรุงระบบบำบัดแบบชีวภาพแบบดั้งเดิมจึงเกิดขึ้นบนพื้นฐานของความต้องการ กำจัดสีย้อมจากน้ำเสียให้หมดสิ้นหรือเปลี่ยนรูปอย่างสมบูรณ์ ไม่ก่อให้เกิดความเป็นพิษเมื่อปลดปล่อยสู่สิ่งแวดล้อม

การพัฒนาและปรับปรุงการบำบัดน้ำเสียทางชีวภาพแบบดั้งเดิมเพื่อลดมลพิษจากสีย้อม

จากพื้นฐานความรู้ของการศึกษาวิจัยที่พบว่า สีย้อมถูกย่อยสลายได้อย่างมีประสิทธิภาพภายใต้ภาวะไร้อากาศ โดยจุลินทรีย์ประเภทไม่ใช้อากาศ แต่สารเปลี่ยนรูปจากสีย้อมหรือ by product ที่ได้ กลับเป็นสารที่มีพิษทั้งต่อจุลินทรีย์ เองและสุขภาพอนามัย อย่างสารก่อมะเร็ง ได้แก่ สารประเภทอะโรมาติก เอมีน (Aromatic Amine) ซึ่งสามารถถูกย่อย สลายไได้อย่างสมบูรณ์โดยจุลินทรีย์ประเภทใช้อากาศ จึงทำให้เกิดแนวคิดการบำบัดร่วมกันระหว่างกระบวนการไร้อากาศและ ใช้อากาศในการบำบัดสีย้อม โดยการศึกษาวิจัยที่ผ่านมาได้มีการออกแบบกระบวนการบำบัดสีย้อมตามแนวคิดข้างต้นอยู่ 2 ลักษณะด้วยกัน คือ 1) การบำบัดร่วมไร้อากาศและใช้อากาศแบบแยกขั้นตอน (Separated stage AnaerobicAerobic process) 2) การบำบัดร่วมไร้อากาศและใช้อากาศแบบถังเดียว (Single stage Anaerobic-Aerobic process)

1. การบำบัดร่วมไร้อากาศและใช้อากาศแบบแยกขั้นตอน (Separated stage Anaerobic-Aerobic process) ในกระบวนการนี้น้ำเสียสีย้อมจะเข้าสู่ระบบหรือกระบวนการบำบัดน้ำเสียแบบไร้อากาศ เมื่อได้ระยะเวลาเก็บกักน้ำเสีย ตามค่าการออกแบบที่มีประสิทธิผลแล้ว น้ำเสียที่ผ่านการบำบัดด้วยกระบวนการไร้อากาศจะถูกถ่ายเทสู่ระบบหรือกระบวน การบำบัดเสียแบบใช้อากาศ ดังแสดงในรูปที่ 3

รูปที่ 3 ตัวอย่างการบำบัดร่วมไร้อากาศและใช้อากาศแบบแยกขั้นตอน ที่มา: อ้างอิงตาม Amaral F.M. และคณะ

โดยมีการศึกษาการใช้ระบบระบบชั้นตะกอนจุลินทรีย์ไร้อากาศแบบไหลขึ้นหรือยูเอเอสบี (Upflow anaerobic sludge blanket; UASB) ร่วมกับระบบตะกอนเร่ง (Activated sludge; AS) พบว่า สีย้อมลดลงร้อยละ $90-95$ และหลงเหลือสารอะโรมาติกเอมีนในรูปของซีโอดี ซึ่งถูกกำจัดด้วย AS ร้อยละ $85-90$

กระบวนการการบำบัดร่วมระหว่างระบบบำบัดน้ำเสียแบบไร้อากาศและใช้อากาศนี้ มีข้อดีที่สามารถบำบัดสีย้อม ได้อย่างสมบูรณ์ แต่มีข้อเสียเปรียบ เช่น ต้องการพื้นที่ขนาดใหญ่เพราะต้องเดินระบบบำบัดน้ำเสียถึงสองระบบในเวลา เดียวกัน หากเดิมมีระบบบำบัดแบบใช้อากาศ จำเป็นต้องก่อสร้างเพิ่มเติมในส่วนของระบบบำบัดแบบไร้อากาศ นอกจาก นี้ยังต้องการการกำจัดกากตะกอนน้ำเสีย และการเดินควบคุมดูแลระบบบำบัดน้ำเสียค่อนข้างงุ่งยากซับซ้อน
2. การบำบัดร่วมไร้อากาศและใช้อากาศแบบถังเดียว (Single stage Anaerobic-Aerobic process) จากข้อ เสียเปรียบของการบำบัดร่วมระหว่างระบบบำบัดน้ำเสียแบบไร้อากาศและใช้อากาศ ส่งผลให้ระบบบำบัดแบบถังเทชีวภาพ (Sequencing Batch Reactor; SBR) ได้รับความสนใจนำมาศึกษาวิจัยเพื่อช่วยบำบัดสีย้อมอย่างสมบูรณ์ ด้วยข้อได้ เปรียบที่ SBR ใช้พื้นที่น้อยกว่า การควบคุมดูแลรักษาง่าย มีความยืดหยุ่นในการปรับสภาวะช่วงทำปฎิกิริยา ค่าใช้จ่ายใน การกำจัดกากตะกอนต่ำกว่าระบบ AS อาจไม่จำเป็นต้องก่อสร้างระบบบำบัดขึ้นใหม่เนื่องจากสามารถปรับใช้จากระบบ AS ที่มีอยู่แล้วได้ รูปแบบการทำงานของ การบำบัดด้วยถังเทชีวภาพภายใต้สภาวะไร้อากาศและใช้อากาศ แสดงดังรูปที่ 4

รูปที่ 4 ตัวอย่างขั้นตอนการบำบัดร่วมไร้อากาศและใช้อากาศแบบถังเดียว ที่มา: Khalida Muda และคณะ

น้ำเสียสีย้อมจะถูกสูบเข้าระบบ SBR โดยมีการกวนผสมอยู่ตลอดเวลาแต่ไม่มีการเติมอากาศ เนื่องจากมีการ ปรับสภาพให้เป็นแบบไร้อากาศเพื่อให้เกิดการกำจัดสีย้อม จากนั้นเมื่อระยะเวลากักเก็บน้ำเสียในสภาวะไร้อากาศเพียงพอ แล้ว จะมีการเติมอากาศเข้าสู่ระบบบำบัดเพื่อให้เกิดสภาวะใช้อากาศในการบำบัดสารเปลี่ยนรูปจากสีย้อม เช่น สาร ประเภทอะโรมาติก เอมีน จากนั้นระบบจะถูกทิ้งให้เกิดการตกตะกอนของจุลินทรีย์และสูบน้ำที่ผ่านการบำบัดแล้วออก ในที่สุด โดยทุกขั้นตอนที่กล่าวมาจะเกิดขึ้นในถังปฏิกิริยาหรือถังบำบัดเพียงถังเดียว

มีการศึกษาวิจัยด้วยการใช้ Anaerobic-Aerobic Sequencing Batch Reactor (A/A SBR) ในการบำบัด สีย้อมโครงสร้างต่าง ๆ พบว่ามีประสิทธิภาพในการบำบัดสีย้อมได้อยู่ในช่วงร้อยละ $32-77$ ตามแต่ชนิดของโครงสร้างสี ความเข้มข้นของสีย้อม ระยะเวลาเก็บกักน้ำเสียและสารอาหารจุลินทรีย์ที่ใช้ในการศึกษา

ตารางที่ 1 ได้เปรียบเทียบประสิทธิภาพในการบำบัดน้ำเสียสีย้อมโดยการบำบัดร่วมไร้อากาศและใช้อากาศแบบ แยกขั้นตอนและถังเดียว จะเห็นได้ว่า ความสามารถในการบำบัดสีย้อมของกระบวนการบำบัดร่วมไร้อากาศและใช้อากาศ อยู่ในเกณฑ์ที่ดี โดยเฉพาะกระบวนการแบบถังเดียวที่ดูจะมีข้อได้เปรียบหลาย ๆ อย่าง อย่างไรก็ตาม มีงานวิจัยบางชิ้นชี้ ให้เห็นว่ากระบวนการบำบัดร่วมไร้อากาศและใช้อากาศแบบถังเดียวไม่สามารถกำจัดสารอะโรมาติกเอมีนบางตัวได้อย่าง สมบูรณ์ในช่วงสภาวะเติมอากาศ

ตารางที่ 1 ร้อยละการบำบัดสีด้วยการบำบัดร่วมไร้อากาศและใช้อากาศแบบแยกขั้นตอนและแบบถังเดียว

กระบวนการ	การดำเนินการ	ค่าความเข้มข้นสีน้ำเสีย (มก./ล.)	ร้อยละการบำบัดสี
การบำบัดร่วมไร้อากาศและ ใช้อากาศแบบแยกขั้นตอน	UASB +AS	450	75
	Anaerobic pack column+AS	$50-400$	$60-80$
การบำบัดร่วมไร้อากาศและ ใช้อากาศแบบถังเดียว	Anaerobic-aerobic SBR	100	58
	Anaerobic-aerobic SBR	533	>90

บทสรุป

การบำบัดสีย้อมจากน้ำเสียโรงงานฟอกย้อมสิ่งทอด้วยวิธีทางชีวภาพ จำเป็นต้องอาศัยจุจินทรีย์ประเภทไม่ใช้อากาศ และใช้อากาศ ทำงานร่วมกันเพื่อให้เกิดการเปลี่ยนรูปของสีย้อมไปอยู่ในรูปที่ไม่มีพิษต่อสุขภาพและสิ่งมีชีวิตในสิ่งแวดล้อม ซึ่งการทำงานร่วมกันของจุลินทรีย์ทั้งสองประเภทนี้ถูกออกแบบให้อยู่ภายใต้กระบวนร่วมแบบไร้อากาศและใช้อากาศแบบ แยกขั้นตอนหรือถังเดียว โดยทั้งสองกระบวนการบำบัดนี้มีข้อได้เปรียบและเสียเปรียบต่างกันออกไปทั้งในแง่ประสิทธิภาพ ในการบำบัดสีย้อม การลดความเป็นพิษของสีย้อม พื้นที่ที่ต้องการ ค่าก่อสร้างและดำเนินการ มากไปกว่านั้น หากมุ่งเน้น เพื่อการลดมลพิษจากสีย้อมอย่างจิงจัง ควรพิจารณาถึงความสามารถในการกำจัดสารประเภทอะโรมาติก เอมีน ที่เป็นผลผลิต จากการย่อยสลายสีย้อมด้วยจุลินทรีย์ประเภทไม่ใช้อากาศ ซึ่งดูเหมือนผลการศึกษาวิจัยกระบวนร่วมแบบไร้อากาศและ ใช้อากาศแบบแยกขั้นตอน จะชี้ว่ากระบวนการนี้เหมาะสมด้วยศักยภาพในการกำจัดสารประเภทอะโรมาติก เอมีน อย่างไรก็ตาม การพัฒนาปรับปรุงศักยภาพของกระบวนร่วมแบบไร้อากาศและใช้อากาศแบบถังเดียวในการกำจัดสาร ประเภทอะโรมาติก เอมีน ควรได้รับการศึกษาวิจัยเพิ่มเติม อาทิเช่น การเพิ่มการเติมอากาศ หรือการใช้สารหรือวัสดุ ดูดซับสารพิษ เป็นต้น นอกจากนี้ ปัจจัยพื้นฐานในการออกแบบระบบบำบัดน้ำเสียเป็นสิ่งไม่สามารถมองข้ามไปได้ เช่น ค่าอายุตะกอน ค่าการเก็บกักน้ำเสีย ค่าของสีย้อมในน้ำเสีย และสารอาหารส่งเสริมการย่อยสลายสีย้อม เป็นต้น อันจะ นำไปสู่การเพิ่มศักยภาพของกระบวนการบำบัดสีย้อมด้วยจุลินทรีย์ในอนาคตต่อไป

เอกสรรอ้างอิง

Abrahart, E.N., 1977, Dye and Their Intermediates, Pergamon Press Ltd., pp. 13-31, 185-192.
Bell, J., Plumb, J.J., Buckley, C.A. and Stuckey, D.C., 2000, "Treatment and Decolorization of Dyes in an Anaerobic Baffled Reactor", Journal of Environmental Engineering, Vol. 126, No. 21, pp. 1026-1032.

Bromley- Challenor, K.C.A., Knapp, J.S., Zhang, Z., Gray, N.G., Hetheridge, M.J. and Evans, M.R., 2000, " Decolorization of Azo Dye by Unacclimated Activated Sludge under Anaerobic Condition", Water Research, Vol. 34, No.8, pp. 4410-4418.

Ekici, P., Leupold, G. and Parlar, H., 2001, "Degradability of Selected Azo dye Metabolites in Activated Sludge System", Chemophere, Vol. 44, pp. 721-728.

Field, J.A., Stams, A.J.M., Kato, M. and Schraa, G., 1995, "Enhanced Biodegradation of Aromatic Pollutants in Co-Cultures of Anaerobic and Anaerobic Bacterial Consortia", Antonic Van Leeuwenhock 67, pp. 47-77.
F.M. Amaral , M.T. Kato , L. Florncio, S. Gavazza, 2014, Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes, Bioresource Technology, Vol. 163, pp. 364-369.

Kapdan, I.K. and R. Oztekin, 2006, "The Effect of Hydraulic Residence Time and Initial COD Concentration on Color and COD Removal Performance of the Anaerobic- Aerobic SBR", Journal of Hazardous Materials, Accepted.

Kapdan, I.K., Tekol, M. and Sengul, F., 2003, "Decolorization of Simulated Textile Wastewater in an Anaerobic-Aerobic sequential Treatment System", Process Biochemistry, Vol. 38, No. 7, pp. 1031-1037.

Khalida Muda, Azmi Aris, Mohd Razman Salim and Zaharah Ibrahim. Sequential AnaerobicAerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment (Online). Available from: http://www.intechopen.com/books/biomass-now-sustainable-growth-and-use/sequential-anaerobic-aerobic-phase-strategy-using-microbial-granular-sludge-for-textile-wastewater-t

Luangdilok, W. and Panswad, T., 2000, "Effect of Chemical Structures of Reactive Dyes on Color Removal by an Anaerobic-Aerobic Process", Water Science and Technology, Vol. 42, No. 3-4, pp. 377-382.

O’Neill, C., Hawkes, F.R., Hawkes, D.L.,Esteves, S. and Wilcox S.J.,1999, "Anaerobic-Aerobic Treatment of Simulated Textile Effluent", Chemical Technology Biotechnology, Vol. 74, No. 8, pp. 993-999.

O'Neill, C., D.L. Hawkes, S. Esteves and S.J. Wilcox, 2000, "Anaerobic-Aerobic Biotreatment of Simulated Textile Effluent Containing Varied Ratios of Starch and Azo Dye", Water Research, Vol.34, No.8, pp. 2355-2361.

Pasukaphun, N., Vinitnantharat, S. 2003. "Degradation of organic substances and reactive dye in an immobilized-cell sequencing batch reactor operation on simulated textile waste water". Journal of Environmental Science and Health Part A-Toxic /-substances \& Environmental Engineering A38, 10, pp. 2019-2028

Pierce, J., 1994, "Colour in Textile Effluents-the Origins of the Problem", Journal of the Society of Dyers and Colourists, Vol. 110, No. 4, pp. 131-133.

Ramakrishna, K.R. and Viraraghavan, T., 1997, "Dye Removal Using Low Cost Adsorbents", Water Science and Technology, Vol.36, No. 2-3, pp. 189-196.

Shaw, C.B., Carliell, C.M. and Wheatley, A.D., 2002, "Anaerobic/Aerobic Treatment of Coloured Textile Effluents Using Sequencing Batch Reactors", Water Research, Vol. 36, No. 8, pp. 1993-2002.

Slokar, Y.M. and Majcen, L.M.A., 1998, "Methods of Decolorization of Textile Wastewaters", Dyes and Pigments, Vol. 37, No. 4, pp. 335-356.

Supak, N., Juntongjin, K., Damronglerd, S., Dlia, M-L, Strehaiano, P. 2004. "Microbial decolorization of reactive azo dyes in a sequential anaerobic - aerobic system". Chemical Engineering Journal, pp. 169-176.

Water, B.D., 1995, "The Regulator's View in Colour in Dyehourse Effluent", Journal of the Society of Dyers and Colourists, the Alden Presss, Oxford.

Yoo, E.S., Libra, J. and Adrian, L., 2001, "Mechanism of Decolorization of Azo Dyes in Anaerobic Mixed Culture", Journal of Environmental Engineering, Vol. 127, No. 9, pp. 844-849.

ร.อ.หญิง รัชนีย์ รุกขชาติ. สีย้อมและการบำบัดสีย้อมในน้ำทิ้ง(ออนไลน์) http://www.navy.mi.th/science/ BrithDay46/Brithday_data/biology.htm

กรมโรงงานอุตสาหกรรม กระทรวงอุตสาหกรรม, 2542 , สำนักเทคโนโลยีสิ่งแวดล้อมโรงงาน, คู่มือการจัดการสิ่งแวดล้อม อุตสาหกรรมฟอกย้อม, กรุงเทพฯ.

สมาคมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย, 2544 , คู่มือการบำบัดน้ำเสียจากโรงงานทอ ผ้าและฟอกย้อม, กรุงเทพะ.

