พลกระทuของUsากถการก์โลกรังน

 warming (กาшกี่ 1) กี่ปีสาเหทุบาจากการเพี่ยชี้นของปริบานนแกิสคาร์ยอนไกออกไชก์แล:แกีส

ภาพที่ 1 โลกที่พวกเราทุกคนอาศัยอยู่กำลังร้อนขึ้นเรื่อยๆ ด้วยน้ำมือของเราเอง
ที่มา : www.conserve-energy-future.com (บนซ้าย)
www.kenya-post.com (บนขวา)
http://gbteat.co.nz/news/climate-change-response-act (ล่าง)

มีการศึกษาและคาดการณ์ผลกระทบของการเพิ่มขึ้นของอุณหภูมิของอากาศต่อการเปลี่ยนแปลงอุณหภูมิของน้ำ เช่น ในประเทศแคนาดา นักวิทยาศาสตร์ พบว่าในทะเลสาบที่มีความลึกเฉลี่ย 10 เมตร ถ้าอุณหภูมิของอากาศเพิ่มขึ้น 4 องศาเซลเซียส จะส่งผลทำให้อุณหภูมิของน้ำบริเวณผิวน้ำเพิ่มขึ้นเป็น $3-8$ องศาเซลเซียส การเพิ่มขึ้นของอุณหภูมิน้ำ ดังกล่าวจะส่งผลกระทบทั้งทางตรงและทางอ้อมต่อความอยู่รอดของสิ่งมีชีวิตที่อาศัยอยู่ในแหล่งน้ำ ทั้งนี้เนื่องจากสิ่งมีชีวิต แต่ละสายพันธ์มีช่วงอุณหภูมิที่เหมาะสมต่อการเจริญเติบโตเพียงช่วงใดช่วงหนึ่ง เช่น ปลาที่อาศัยอยู่ในเขตร้อนสามารถ ดำรงชีวิตอยู่ได้ในแหล่งน้ำที่มีอุณหภูมิอยู่ระหว่าง $25-33$ องศาเซลเซียส ช่วงอุณหภูมิที่เหมาะสมย่อมขึ้นอยู่กับชนิดของ ปลาแต่ละชนิด เช่น ปลานิลสามารถเจริญเติบโตได้ดีที่อุณหภูมิระหว่าง $22-30$ องศาเซลเซียส (ภาพที่ 2) เป็นต้น ถ้าอุณหภูมิของน้ำเพิ่มสูงขึ้นมากกว่าที่สิ่งมีชีวิตสามารถทนทานได้ ผลกระทบที่เกิดขึ้นคือสิ่งมีชีวิตจะอพยพย้ายถิ่นไปอยู่ ในพื้นที่ที่มีอุณหภูมิเหมาะสมกว่า ซึ่งการย้ายถิ่นนี้จะเกิดขึ้นได้เฉพาะในเขตที่มีน้ำลึกหรือแหล่งน้ำขนาดใหญู่เท่านั้น เนื่องจากสิ่งมีชีวิตที่อาศัยอยู่ในแหล่งน้ำที่ลึกหรือมีขนาดใหญ่มีโอกาสที่จะหลบหนีความร้อนไปสู่บริเวณที่มีอุณหภูมิต่ำกว่าได้ ต่างไปจากสิ่งมีชีวิตที่อาศัยอยู่ในแหล่งน้ำขนาดเล็ก เช่น ห้วยหรือหนองน้ำที่ตื้น ซึ่งมีพื้นที่และความลึกจำกัด สิ่งมีชีวิต ไม่สามารถหลบหนีความร้อนของน้ำที่เพิ่มขึ้นได้ ทำให้เกิดความเครียด เจริญเติบโตได้ช้า หรือต้องตายในที่สุด ปลาสามารถ ดำรงชีวิตอยู่ได้ในแหล่งน้ำที่มีอุณหภูมิเฉลี่ยสูงสุดประมาณ 38 องศาเซลเซียส และสำหรับสัตว์ไม่มีกระดูกสันหลังที่อาศัย อยู่ในน้ำ เช่น แมลงน้ำสามารถดำรงชีวิตได้ที่อุณหภูมิประมาณ 50 องศาเซลเซียส เป็นต้น ส่วนแพลงก์ตอนพืชหรือ สาหร่ายโดยเฉพาะกลุ่มสีเขียวแกมน้ำเงินสามารถอยู่ได้ในน้ำที่มีอุณหภูมิสูงสุดประมาณ 70 องศาเซลเซียส

ภาพที่ 2 ปลานิลสามารถเจริญเติบโตได้ดีที่อุณหภูมิระหว่าง $22-30$ องศาเซลเซียสแต่จะไม่สามารถอยู่รอดได้ ถ้าอุณหภูมิของน้ำเพิ่มเป็น 38 องศาเซลเซียส

การเพิ่มขึ้นของอุณหภูมิน้ำยังส่งผลโดยตรงต่อการเปลี่ยนแปลงทางสรีระวิทยาและกลไกการทำงานภายในของ สิ่งมีชีวิต เช่น ส่งผลให้กระบวนการเผาผลาญอาหาร (metabolism) ของสิ่งมีชีวิตเพิ่มขึ้น จึงทำให้สิ่งมีชีวิตต้องการ กินอาหารเพิ่มมากขึ้น และต้องการออกซิเจนเพิ่มขึ้นเพื่อการดำรงชีวิต ดังนั้น การที่สิ่งมีชีวิตโดยเฉพาะปลาซึ่งเป็น ผู้ล่ากินอาหารมากขึ้น ย่อมมีผลต่อการเปลี่ยนแปลงสังคมของสิ่งมีชีวิตชนิดอื่น ๆ ตามไปด้วย (ภาพที่ 3) เช่น เมื่อปลา ต้องกินแพลงก์ตอนสัตว์หรือแมลงน้ำขนาดเล็กเป็นอาหารมากขึ้น ทำให้แหล่งน้ำขาดแคลนอาหารอาจนำไปสู่ภาวะอดอยาก ของผู้ล่าได้ นอกจากนั้นเมื่อปลากินอาหารมากขึ้น จึงมีการขับถ่ายของเสียออกมาในปริมาณมาก ซึ่งย่อมส่งผลต่อคุณภาพน้ำ และมีผลต่อเนื่องไปสู่การเปลี่ยนแปลงสังคมของสิ่งมีชีวิตในแหล่งน้ำ ทำให้ขาดความสมดุลของระบบนิเวศ เช่น การลดลงของแพลงก์ตอนสัตว์ที่ถูกปลากิน อาจส่งผลต่อเนื่องทำให้แพลงก์ตอนพืชในแหล่งน้ำเกิดการบลูมขึ้นมาได้ เนื่องจากไม่มีแพลงก์ตอนสัตว์ช่วยควบคุมประชากรของแพลงก์ตอนพืช จึงเรียกแหล่งน้ำลักษณะนี้ว่าเป็นแหล่งน้ำที่มี แพลงก์ตอนพืชเป็นชนิดเด่น (phytoplankton dominated state)

ภาพที่ 3 การล่าเหยื่อของปลา Pike ซึ่งเป็นปลาผู้ล่าในเขตหนาว
ที่มา : http://wawangresort.wordpress.com/tag/northern-pike-fishing/

การเพิ่มขึ้นของอุณหภูมิน้ำนอกจากจะส่งผลต่อกระบวนการเผาผลาญอาหารของสิ่งมีชีวิตแล้วยังทำให้ การขยายพันธุ์และสืบพันธุ์ของสัตว์น้ำลดลงด้วย เช่น ปลากัด (guppy; Poeciliareticulata) สามารถผสมพันธุ์ วางไข่ และให้ผลผลิตลูกปลาวัยอ่อนได้สูงสุดที่อุณหภูมิน้ำประมาณ $25-27$ องศาเซลเซียส แต่าอุณหภูมิของน้ำสูงขึ้นจนถึง 30 องศาเซลเซียส มีผลทำให้ลูกปลาวัยอ่อนและปลาแม่พันธุ์ตายของเพิ่มมากขึ้น

การที่อุณหภูมิน้ำในช่วงกลางวันและกลางคืนมีแตกต่างกันมากอาจส่งผลกระทบต่อสิ่งมีชีวิตในแหล่งน้ำได้ เช่นเดียวกัน เนื่องจากช่วงกลางวันอุณหภูมิน้ำสูงแต่เวลากลางคืนอุณหภูมิน้ำลดต่ำลง ถ้าการลดลงของอุณหภูมิน้ำจาก ช่วงกลางวันสู่ช่วงกลางคืนมีการเปลี่ยนแปลงอย่างค่อยเป็นค่อยไป เช่น ไม่เกิน $1-2$ องศาเซลเซียส จะไม่มีผลกระทบต่อ สิ่งมีชีวิตมากนัก แต่ถ้าอุณหภูมิน้ำเกิดการเปลี่ยนแปลงอย่างรวดเร็วและฉับพลัน เช่น ในแหล่งน้ำขนาดเล็ก อาจทำให้ปลา เกิดความเครียด อ่อนแอลง และติดเชื้อโรคหรือเป็นโรคต่าง ๆ ได้ง่ายขึ้น

การเพิ่มสูงขึ้นของอุณหภูมิในน้ำยังไปกระตุ้นการทำงานของจุลินทรีย์ในแหล่งน้ำให้เกิดการย่อยสลายสารอินทรีย์ ทับถมกันในตะกอนใต้น้ำ ก่อให้เกิดการปลดปล่อยธาตุอาหารพืช เช่น สารประกอบฟอสฟอรัสมากขึ้น จนสามารถไปกระตุ้น ให้แพลงก์ตอนพืชเกิดการบลูมหรือปรากฎการณ์ยูโทรฟิเคชั่น (eutrophication) จนกลายเป็นปัญหาในแหล่งน้ำได้ และอุณหภูมิของน้ำที่สูงขึ้นยังมีส่วนไปกระตุ้นให้เกิดการบลูมของสาหร่ายสีเขียวแกมน้ำเงิน (cyanobacteria) จากขบวน การสังเคราะห์แสง ซึ่งสาหร่ายกลุ่มนี้สามารถสร้งงสารพิษได้ ฉะนั้นเมื่อเกิดการบลูมขึ้นมา (ภาพที่ 4) จะทำให้น้ำในแหล่งน้ำนี้ ไม่สามารถนำมาใช้ประโยชน์ได้ เนื่องจากสารพิษที่เกิดขึ้นส่งผลกระทบต่อสุขภาพมนุษย์และสัตว์ที่ใช้ประโยชน์จาก แหล่งน้ำนั้น นอกจากการที่อุณหภูมิของน้ำที่เพิ่มสูงขึ้นจะไปกระตุ้นการเจริญูเติบโตของแพลงก์ตอนพืชและสาหร่าย ขนาดเล็กแล้ว พืชน้ำขนาดใหญ่ยังได้รับผลกระทบเช่นเดียวกัน กล่าวคือ อุณหภูมิน้ำที่เพิ่มขึ้น $2-3$ องศาเซลเซียส ทำให้ พืชน้ำชนิด Elodia Canadensis เจริญเติบโตอย่างรวดเร็วและมีมวลชีวภาพเพิ่มขึ้นได้ถึงร้อยละ $300-500$ ส่งผลต่อ การใช้ประโยชน์ของแหล่งน้ำ เช่น กีดขวางการคมนาคมขนส่ง กิจกรรมทางน้ำ และทำให้แหล่งน้ำตื้นเขินเร็วขึ้นด้วย

ภาพที่ 4 การบลูมของสาหร่ายสีเขียวแกมน้ำเงินในทะเลสาบในประเทคจีน
ที่มา: http://waterresearch.blogspot.com/2007/06/bule-green-algae-bloom-in-dianchi-lake.html (บน) และ http://www.wri.org/project/eutrophication (ล่าง)

อุณหภูมีที่เพิ่มสูงขึ้นยังส่งผลต่อปัจจัยทางกายภาพและเคมีในแหล่งน้ำด้วยเช่นกัน เนื่องจากช่วงฤดูร้อนแสงแดดจัด และอุณหภูมิที่เพิ่มสูงขึ้น ทำให้อัตราการระเหยของน้ำในแหล่งน้ำเพิ่มมากขึ้นจนทำให้แหล่งน้ำขนาดเล็กเหือดแห้งได้ （ภาพที่ 5）หรือมีผลต่อการไหลของน้ำในแม่น้ำลำธารให้ช้าลง ทำให้การแลกเปลี่ยนออกซิเจนในแหล่งน้ำลดลง การลดลงของปริมาณน้ำในแหล่งน้ำในช่วงฤดูร้อนยังมีผลต่อการเปลี่ยนแปลงความเข้มข้นของสารละลายต่าง ๆ ในน้ำ ที่อาจมีแนวโน้มเพิ่มมากขึ้นหรือกล่าวอีกนัยหนึ่งคือ ปริมาณน้ำในแหล่งน้ำที่ลดลงทำให้ความสามารถในการเจือจางมลพิษ หรือสารพิษต่าง ๆ ลดลง นอกจากนี้อุณหภูมิของน้ำที่เพิ่มสูงขึ้นยังมีผลโดยตรงที่ทำให้เกิดความเป็นพิษของสารบางชนิด มากยิ่งขึ้นด้วย เช่น แอมโมเนีย $\left(\mathrm{NH}_{3}\right)$ ซึ่งจะมีความเป็นพิษมากขึ้นเมื่ออุณหภูมิของน้ำเพิ่มสูงขึ้น ส่งผลกระทบ โดยตรงต่อปลา ทำให้ปลาเกิดความเครียด ทำลายเหงือกปลา และลดความสามารถในการแลกเปลี่ยนแก๊ส ส่งผลให้ ปลาอ่อนแอ เมื่อปลาอ่อนแอทำให้ปลาติดเชื้อโรคได้งายยิ่งขึ้น และถ้าแอมโมเนียมีปริมาณสูงมากจะส่งผลทำให้ปลาตาย ได้อย่างเฉียบพลัน

ภาพที่ 5 การเหือดแห้งของหัวเขื่อนแควน้อยบำรุงแดน ปี 2553 （ซ้าย） และภัยแล้งในลำน้ำมูล จังหวัดบุรีรัมย์ในรอบ 40 ปี（2554）（ขวา） ที่มา ：http：／／teedin－phitsanulok．com／（ซ้าย）และhtp：／／www．buriramtime．com

ผลกระทบที่สำคัญอีกประการของการเพิ่มขึ้นของอุณหภูมิน้ำได้แก่ ความสามารถในการละลายของออกซิเจนใน แหล่งน้ำจะลดลง เช่น อุณหภูมิของน้ำที่ 0 องศาเซลเซียส จะมีปริมาณออกซิเจนประมาณ 14 มิลลิกรัมต่อลิตร ถ้าอุณหภูมิของน้ำเพิ่มขึ้นเป็น 25 องศาเซลเซียส น้ำจะมีปริมาณออกซิเจนลดลงเหลือประมาณ 8.3 มิลลิกรัมต่อลิตร ปกติปริมาณออกซิเจนที่ละลายในน้ำที่เหมาะสมสำหรับสิ่งมีชีวิตในแหล่งน้ำ มีค่าประมาณ 5 มิลลิกรัมต่อลิตรหรือมากกว่า ถ้าเมื่อใดที่ปริมาณออกซิเจนในน้ำลดลงจนถึงระดับ $2-3$ มิลลิกรัมต่อลิตร ทำให้เกิดภาวะสภาพขาดออกซิเจน（hypoxia） มีผลให้ปลาหรือสิ่งมีชีวิตต่าง ๆ ดำรงชีวิตอยู่ในน้ำด้วยความยากลำบาก กินอาหารได้ลดลง การเจริญเติบโตลดลง และส่งผลทำให้ภูมิต้านทานลดลงอีกด้วย

การลดลงของปริมาณออกซิเจนละลายในน้ำยังส่งผลให้น้ำเน่าเสีย ทั้งนี้เพราะจุลินทรีย์ในน้ำต้องการใช้ออกซิเจน ในการย่อยสลายสารอินทรีย์ด้วยเช่นกัน ถ้าในแหล่งน้ำมีออกซิเจนไม่เพียงพอ แบคที่เรียกลุ่มที่ใช้ออกซิเจนในการย่อยสลาย สารอินทรีย์（aerobic bacteria）ลดลงแล้ว สารอินทรีย์จะถูกย่อยสลายด้วยแบคทีเรียกลุ่มที่ไม่ใช้ออกซิเจน（anaerobic bacteria）หรือกลุ่มที่ใช้ออกซิเจนร่วมกับไม่ใช้ออกซิเจนในการย่อยสลาย（facultative bacteria）ทำให้เกิดแก๊สต่าง ๆ เช่น ไฮโดรเจนซัลไฟด์หรือแก๊สไข่เน่า ซึ่งจะทำให้น้ำในแหล่งน้ำเปลี่ยนเป็นสีดำและส่งกลิ่นเหม็นจนไม่สามารถนำมาใช้ ประโยชน์ได้

ภาพที่ 6 การเหือดแห้งของทะเลสาบในต่างประเทศจนทำให้สิ่งมีชีวิตต้องล้มตายเป็นจำนวนมาก ที่มา : http://www.desdemonadespair.net/2009/12/hume-dam-then-and-now.html

ผลกระทบต่างๆ ที่เกิดขึ้นจะเห็นได้ว่าไม่ใช่เรื่องง่ายสำหรับสิ่งมีชีวิตที่จะสามารถปรับตัวให้อยู่รอดได้ในแหล่งน้ำ ที่มีอุณหภูิิที่เพิ่มสูงขึ้น และส่งผลเกิดการเปลี่ยนแปลงในแหล่งน้ำทั้งทางด้านกายภาพ เคมี และชีวภาพ ท้ายสุดจะย้อน กลับมาหาพวกเราทุกคน ไม่ว่าจะเป็นเรื่องของการแก่งแย่งน้ำ หรือความมั่นคงทางด้านอาหารซึ่งนับวันจะยิ่งวิกฤตขึ้น เพราะสภาพแวดล้อมในธรรมชาติไม่เอื้ออำนวยให้เราสามารถผลิตอาหารได้เหมือนเดิม (ภาพที่ 6) ดังนั้น เพื่อช่วยกัน ลดผลกระทบดังกล่าว เราทุกคนจะต้อง ลด ละ เลิก กิจกรรมต่าง ๆ ที่ก่อให้เกิดผลกระทบต่อสิ่งแวดล้อม เพราะยิ่ง ถ้าเราไม่ช่วยกันทำในวันนี้ อนาคตลูกหลานเรา อาจจะต้องเผชิญกับวิบากกรรมที่อาจหนักหนาสาหัสมากกว่านี้ก็เเป็นไปได้

ที่มา ที่มา : http://gbmaq.org/what-you-can-do-to-stop-global-warming/

บรรณานุกรม

Andrew J. Boulton. Stream ecology: temperature impacts on. http://waterencyclopedia.com/Re- St/ Stream-Ecology-Temperature Impacts-on.html\#b(accessed on 26/03/2556)
Chaichana, R., L. Leah and B. Moss. 2010. Birds as eutrophicating agent: a nutrient budget for a small lake in a protected area. Hydrobiologia. 646 : 111-121.
Department of Natural Resources and Environment.2013. Freshwater ecosystems biodiversity management issues: changes to temperature patterns. www.nre.vic.gov.au. (accessed on 25/03/2556)
Doll, P and J. Zhang. 2010. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. Discuss. 7 : 1305-1342.
Dzikowski, R., G. Hulata, I. Karplus and S. Harplus. 2001. Effect of temperature and dietary Lcarnitine supplementation on reproductive performance of female guppy (Poecilliareticulata). Aquaculture. 199(3-4): 323-332.
Ficke, A.A., C.A. Myrick and L.J. Hansen. 2005. Potential impact of global climate change on freshwater fisheries. Department of Fishery and Wildlife Ecology, University of Colorado. 85 pp .
IPCC, 2007: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth AssessmentReport of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Kankaala, P., A. Ojala, T. Tulonen and L. Arvola. 2002. Changes in nutrient retention capacity of boreal aquatic ecosystem under climate warming: a simulation study. Hydrobiologia. 469: 67-76.
Klapper, H. 1991. Control of eutrophication in inland waters.Ellis Horwood Ltd., West Sussex.
Northcote, T.G. 1992. Prediction and assessment of potential effects of global environmental change on freshwater sport fish habitat in British Columbia. Geojournal 28(1): 39-49.
Ozdemdr, E and A. Altindag. 2011. The impact of global warming on aquatic life. Department of Biology, Ankara University. 9 pp.

Paerl, H.W. and V. J.P. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research. 46(5): 1349-1363.

