

> ตร.เสาวนีย์ วิจิตรโกสุน * นายตามร อยู่เด็น **

unแำ

 แหล่งกักเก็บหลัก ๆ หลายแเหล่ง แธ่น บธsยากาศจ:กักกก็บคาร์ยอuไกัยากกว่า 0.72 ลัานลัานกัน

คุณสมบัติของถ่านชีวภาพในการกักเก็บคารับอน

ถ่านชีวภาพ คือ วัตถุที่มีเนื้อละเอียดและมีรูพรุนสูงซึ่งมีสัณฐานคล้ายกับถ่านที่เกิดจากการเผาไหม้ตามธรรมชาติ ถ่านชีวภาพผลิตได้โดยการสลายตัวมวลชีวภาพด้วยความร้อนภายใต้สภาวะไร้ก๊าซออกซิเจนหรือจำกัดก๊าซออกซิเจน ทั้งนี้ ถ่านชีวภาพเป็นวัสดุที่อุดมด้วยคาร์บอน มีความเสถียรสูง ผลิตได้จากการนำมวลชีวภาพ (biomass) ผ่านกระบวน การไพโรไลซิส (Pyrolysis) หรือกระบวนการเผาในสภาวะไร้ก๊าซออกซิเจนหรือใช้ก๊าซออกซิเจนน้อยที่สุด (Xu และ คณะ, 2011)

การผลิตถ่านชีวภาพด้วยกระบวนการไพโรไลซิสทำให้คาร์บอนภายในมวลชีวภาพถูกเก็บไว้ในรูปถ่านชีวภาพ ซึ่งเป็นของแข็งคงตัวแทนที่จะถูกเผาให้เปลี่ยนเป็นก๊าซคาร์บอนไดออกไซด์ ในกระบวนการเผาไหม้หรือเผาในสภาวะ ที่มีก๊าซออกซิเจน (Lehmann และ Joseph, 2009) ถ่านชีวภาพมีความคงตัวสูงสามารถกักเก็บไว้ในดินได้เป็นเวลา หลายร้อยหรือหลายพันปี ทั้งนี้ขึ้นอยู่กับคุณภาพของถ่านชีวภาพ เช่น ถ่านชีวภาพจากฟางข้าวที่ผลิตในประเทศจีน สามารถกักเก็บในดินได้ประมาณ $244-1,700$ ปี (Peng และคณะ, 2011) หรือถ่านชีวภาพ Terra preta ในลุ่มน้ำ อะเมซอนที่สามารถคงตัวอยู่ในดินได้ระหว่าง $500-7,000$ ปี (Lehmann, 2007) เป็นต้น

ภาพที่ 1 ถ่านชีวภาพและโครงสร้างภายในลักษณะรูพรุน ที่มา : ทวีวงศ์ ศรีบุรี, 2556

ด้วยถ่านชีวภาพมีสมบัติความคงตัวสูง การมีรูพรุนสูง มีพื้นที่ผิวสัมผัสมาก การมีประจุลบที่พื้นที่ผิวจำนวนมาก และการมีพื้นที่ผิวภายในสูง (Lehmann และคณะ, 2003; Sohi และคณะ, 2010; Kookana และคณะ, 2011) ถ่านชีวภาพสามารถอุ้มน้ำและดูดซับธาตุอาหารได้ดี และเป็นที่อยู่ที่เหมาะสมสำหรับจุลินทรีย์ในดิน จึงเป็นวัสดุที่ เหมาะสมเพื่อเพิ่มความอุดมสมบูรณ์ดิน (Kookana และคณะ, 2011) มนุยย์จึงสามารถใช้ประโยชน์จากถ่านชีวภาพ มาเป็นเวลาหลายพันปีมาแล้ว เช่น การปรับปรุงคุณภาพดิน (Lehmann และคณะ, 2003) การเพิ่มผลผลิตทางการเกษตร และการกักเก็บคาร์บอน ซึ่งการใส่ถ่านชีวภาพลงในดินทำให้ดินมีความอุดมสมบูรณ์เพิ่มขึ้นเมื่อทำการเพาะปลูกพืช จะทำให้พืชเจิญญเติบโตได้ดี ซึ่งหมายถึงพืชดูดดึงก๊าซคาร์บอนไดออกไซด์จากบรรยากาศได้มากขึ้นด้วย สิ่งที่น่าสนใจ คือ อินทรียวัตถุส่วนใหญ่ที่ใช้เพื่อการปรับปรุงคุณภาพของดิน เช่น ปุยยหมักจะเปลี่ยนแปลงรูปจากอินทรียวัตถุเป็นอนินทรียวัตถุ ในรูปเกลือแร่และก๊าซคาร์บอนไดออกไซด์กลับคืนสู่บรรยากาศอีกครั้งในระยะเวลาไม่นานซึ่งหมายความว่า คาร์บอนจะไม่

ถูกเก็บไว้ในดิน แต่ในทางตรงกันข้าม ถ่านชีวภาพที่มีความเสถียรสูงมากจะถูกเก็บไว้ในดินเป็นเวลาหลายร้อยหรือ หลายพันปี (Lehmann และคณะ, 2006) ด้วยสมบัติดังกล่าวถ่านชีวภาพจึงมีความเหมาะสมในการใช้เป็นวัสดุเพื่อช่วย กักเก็บคาร์บอนในดิน

การกักเก็บคาร์่บอนในพื้นที่เกษตรกรรม

การกักเก็บคาร์บอนในพื้นที่เกษตรกรรมเป็นแนวทางหนึ่งในการจัดการคาร์บอน เพื่อลดปริมาณก๊าซคาร์บอนได ออกไซด์ในชั้นบรรยากาศ คาร์บอนจะถูกสะสมในพืชและในดิน ที่มีลักษณะคล้ายกับการกักเก็บคาร์บอนของพื้นที่ป่าไม้ แต่ระยะเวลาในการกักเก็บและการรบกวนระบบนิเวศน์จะแตกต่างกัน โดยการใช้พื้นที่เกษตรกรรมเพื่อเป็นแหล่งสะสม คาร์บอน เป็นวิธีการหนึ่งที่องค์การอาหารและการเกษตรแห่งสหประชาชาติ หรือ FAO (Food and Agriculture Organization) ได้ให้ความสนใจอย่างมากในการใช้ลดก๊าซเรือนกระจก (FAO, 2009) และยังเป็นวิธีที่ได้รับการส่งเสริม ในสหรัฐอเมริกาที่เริ่มซื้อขายคาร์บอนจากพื้นที่เกษตรกรรมที่ดำเนินการไม่ไถพรวนหรือลดการไไพรวนและการใช้พื้นที่ เกษตรกรรมเพื่อปลูกหญ้า ทั้งนี้เนื่องจากวิธีดังกล่าวเป็นวิธีที่มีประสิทธิภาพที่ดี มีต้นทุนต่ำ และสามารถดำเนินการได้ทันที (Lal, R., 2004)

การกักเก็บคาร์บอนในพื้นที่เกษตรกรรมเกิดขึ้นผ่านกระบวนการสังเคราะห์ของพืช โดยพืชดูดดึงก๊าซคาร์บอนได ออกไซด์จากบรรยากาศแล้วเปลี่ยนให้เป็นสารประกอบคาร์บอนเก็บสะสมไว้ในเนื้อเยื่อส่วนต่าง ๆ ของพืช ทั้งในส่วนที่ อยู่เหนือดิน ได้แก่ ลำต้น กิ่ง ใบ ผล และเมล็ด ขณะที่ส่วนที่อยู่ใต้ดิน คือ ราก เมื่อส่วนต่าง ๆ ของพืชตาย เศษซากพืช จะหล่นลงสู่ดินหรือเมื่อสัตว์กินพืชแล้วขับถ่ายลงสู่ดินก็จะเป็นการกลับคืนของคาร์บอนสู่พื้นดินอีกทางหนึ่ง ทำให้เกิด การกักเก็บคาร์บอนไว้ในดินเป็นรูปของอินทรียวัตถุในดิน (soil organic matter: SOM) ซึ่งเป็นสารประกอบคาร์บอน ที่มีโครงสร้างซับซ้อนและยากต่อการย่อยสลาย คาร์บอนที่กักเก็บอยู่ในดินสามารถเก็บไว้ใด้นานและคงทนกว่าการกักเก็บ ไว้ในมวลชีวภาพของพืชเนื่องจากคาร์บอนในดินสลายตัวได้ช้ากว่า จากการประเมินโดยใช้ ${ }^{14} \mathrm{C}$ ชื้ให้เห็นว่า คาร์บอนสามารถ อยู่ในดินได้นานกว่า 6,000 ปี (สิริกานดา วัชราไทย, 2551) คาร์บอนในดินจะถูกปลดปล่อยออกมาในรูปของก๊าซคาร์บอน ไดออกไซด์ได้อย่างรวดเร็วกลับเข้าสู่บรรยากาศจากการหายใจของจุลินทรีย์ในดิน ทั้งนี้ขึ้นอยู่กับ สภาพภูมิอากาศ พืชพรรณ ธรรมชาติ เนื้อดิน การระบายน้ำ และการใช้ประโยชน์ที่ดินของมนุษย์ ซึ่งมีผลอย่างมากต่อปริมาณและการคงตัวของคาร์บอน ที่ถูกกักเก็บอยู่ในดิน

การจัดการพื้นที่เกษตรกรรมเป็นวิธีการปฏิบัติที่สำคัญเพื่อเพิ่มปริมาณและเวลาของการกักเก็บคาร์บอนในดิน การใช้วิธีการปฏิบัตีที่หลากหลายในการทำการเกษตรสมารถเพิ่มประสิทธิภาพการกักเก็บคาร์บอนได้ แนวทางจัดการพื้นที่ เกษตรกรรมเพื่อการกักเก็บคาร์บอนในดินอย่างยั่งยืนสามารถทำได้หลายแนวทาง (UNCCD, 2008) เช่น การอนุรักษ์ดิน การลดการไถพรวนดินเพื่อเพิ่มประสิทธิภาพการใช้น้ำและเพิ่มความเข้มข้นของคาร์บอนในดินซึ่งนำไปสู่การเพิ่ม การกักเก็บก๊าซคาร์บอนไดออกไซด์ในดิน นอกจากนี้ยังสามารถลดการใช้เชื้อเพลิงฟอสซิลที่จะก่อให้เกิดการปลดปล่อย ก๊าซคาร์บอนไดออกไซด์ออกสู่บรรยากาศ การปลูกพืชคลุมดิน ซึ่งจะเพิ่มการกักเก็บคาร์บอนของดิน โดยการเสริมสร้าง โครงสร้างของดินและเพิ่มอินทรียวัตถุลงในดิน การปลูกพืชหมุนเวียน การใส่สารปรับปรุงความอุดมสมบูรณ์ดิน เช่น การใส่ถ่านชีวภาพลงในดินเพื่อเพิ่มอินทรียวัตถุในดิน เพิ่มการดูดซับน้ำและธาตุอาหาร การนำเศษซากพืชจากพื้นที่ เกษตรกรรมปริมาณมหาศาลมาเปลี่ยนให้เป็นถ่านชีวภาพแล้วนำไปกักเก็บในพื้นที่เกษตรกรรม ซึ่งสามารถเพิ่มการกักเก็บ อินทรียวัตถุดินในรูปคาร์บอนได้ปีละ 1,000 ล้านตัน (Sohi และคณะ, 2009) และเป็นการเพิ่มความอุดมสมบูรณ์ของดิน ซึ่งจะเพิ่มการกักเก็บคาร์บอนของพืชและจุลินทรียีดิน

การกักเก็บคาร์บอนด้วยถ่านชีวภาพ

ถ่านชีวภาพเป็นวัสตุชนิดหนึ่งที่ถูกใช้เป็นทางเลือกในการกักเก็็คาร์บอนเพื่อลคปัญหาการเปลี่ยนแปลงสภาพ ภูมิาากาศเนื่องจากล่านชีวภาพเป็นอินทรียรัดัดุที่มีสมบัติความคงตัวสูง คงทนต่อการถูกย่อยสลายตามธรรมชาติ ซึ่งจะ เปลี่ยนอินทรี่ยัวตถุให้กลายเป็นก๊าซคาร์บอนไดออกไซด์สู่บรรยากาศ การเปลี่ยนอินทรียวัตลุให้กลายเป็นถ่านชีวภาพ ผ่านกระบวนการไพโร้ไลซิส แล้วนำไปกักเก็บลงในพื้นที่เกษตตกรรม จึจได้ร้บความสนใจอย่างกว้างขวาง เนื่องจากสามารถ กักเก็บคาร์บอนได้ทั้งทางตรงจากคาร์บอนของถ่านชีวภาพที่ใส่ลงในดิน และเพิ่มการกักเก็บคาร์บอนทางอ้อมจากการ เพิ่มความอุดมสมบูรม์ของดิน ที่ส่งผลให้เพิ่มการกักเก็บคาร์บอนในพืชเพิ่มมากขึ้น ซึ่งหมายถึงการเพิ่มผลผลิตพืช ให้สูงึ้้น อันจะนำไปสู่การเพิ่มความมั่นคงงางอาหารให้แก่มนุษย์ จึงกล่วได้ว่า การใส่ถ่านชีวภาพลงในพื้นที่เกษตรกรรม จึงเป็นการกักเก็็บคาร์บอนอย่างถาวร ดังภาพที่ 2

ภาพที่ 2 การใส่ถ่านชีวภาพลงในพื้นที่เกษตรกรรมเพื่อการกักเก็บคาร์บอน

$$
\text { ที่มา : Lehmann, } 2007
$$

จากการประเมินพื้นที่เกษตรกรรมทั่วโลกกว่า 15,000 ล้านเยคแตร์ ซึ่งพื้นที่เกษตรกรรมเหล่านี้เป็นแหล่งสำคัญ ที่สุดในการักกเก็บคาร์บอนด้วยถ่านชีวภาพ ผลการึึกยาของ Lehmann และคณะ (2006) พบว่า การใส่ถ่านชีวภาพ เพียงอย่างเดียวทุกสิบทีในพื้นที่เกษตรกรรม จะส่งผลให้ในแต่ละปีปเกิดการกักเก็บคาร์บอนได้ 650 ลื้นตัน (คิดเป็นปริมาณ ร้อยละ 10 ของการปลดปล่อยคาร์บอนจากกิจกกรมของมนุยย์ที่เกิดจจกการาใช้น้ำมันเชื้อเพลิงฟอสซิล) นอกจากนั้น ถ่านชีวภาพที่ถูกติิมลงในดินจะมีส่วนช่วยในการดูดซึมกก๊าซมีเทนอีกด้วย โดยพบว่า ดินที่ใส่ถ่านชีวภาพสามารถดูดดึง ก๊าซมีเทนเพิ่มขึ้นร้อยละ 96 และสามารถอุ้มน้ำเพิ่มขึ้น้รอยละ 11 เมื่อเปรียบเทียบกับดินที่ไม่ใส่ถ่านชีวภาพ (Karhu และคณะ, 2011)

การกักเก็บคาร์บอนในดินโดยใช้ถ่านชีวภาพเป็นกลยุทธ์ที่สำคัญอย่างหนึ่งในการแก้ไขปัญหาการเปลี่ยนแปลง สภาพภูมิอากาศ ถ่านชีวภาพสามารถผลิตได้อากเศษยินทรีรวัตถุทุกชนิด จึงสามารถผลิตได้ไริมาณมาก ขณะดดียวกัน ถ่านชีวภาพกีมมีความคงตัวสูงสามารถกักเก็บในดินได้เป็นเวลาหลายร้อยหรือหลายพันปีจึงเสมืือนเป็นแหล่งกักเก็บ

คาร์บอนถาวร และถ่านชีวภาพยังสนับสนุนให้พืชมีผลผลิตเพิ่มขึ้นอีกด้วย จึงเพิ่มการกักเก็บคาร์บอนจากส่วนต่าง ๆ ของมวลชีวภาพของพืชในพื้นที่เพาะปลูก นอกจากนี้เมื่อรวมพื้นที่เพาะปลูกพืชในส่วนต่าง ๆ ของโลกแล้วมีขนาดใหญู่มาก ดังนั้นจึงเป็นแหล่งกักเก็บคาร์บอนขนาดใหญ่ พื้นที่ปลูกพืชหลายชนิดจึงถูกทดลองใส่ถ่านชีวภาพเพื่อตรวจสอบกักเก็บ คาร์บอนทั้งการกักเก็บโดยตรงจากถ่านชีวภาพและการส่งเสริมของถ่านชีวภาพเพื่อเพิ่มการกักเก็บคาร์บอนจากมวลชีวภาพ ของพืช เพื่อเพิ่มผลผลิตพืชและการกักเก็บคาร์บอนที่ผ่านมาได้ดำเนินการในหลายพื้นที่ทั่วโลก รวมทั้งมีการดำเนินการ ในประเทศไทยด้วย

เอกสารอ้างอิง

Falkowski, P., Scholes, R. J., Boyle E., Canadell, J., Canfield, D., Elser, J., Gruber, N. and Hibbard, K. 2000. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science. 290 (5490), 291-296

FAO. Low Greenhouse Gas Agriculture.[Online]. 2009. Available from http://ftp.fao.org/docrep/fao/ 010/ai781e/ai781e00.pdf [2012, February 5]

Kookana, R.S., Sarmah, A.K., Van Zwieten, L.,Krull, E. and Singh, B. 2011. Chapter three-Biochar Application to Soil: Agronomic and Environmental Benefits and Benefits and Unintended Consequences. Advances in Agronomy. 112, 103-143

Karhu, K., Mattila, T., Bergstrom, I. and Regina, K. 2011.Biochar addition to agricultural soil increased CH_{4} uptakeand water holding capacity-Results from a short-term pilot field study. Agriculture, Ecosystems and Environment. 140, 309-313

Lal, R. Soil carbons equestrian impacts on global climate change and food security. [Online]. 2004. Available from: http://sc413.wustl.edu/Lal2004_Science.pdf [2012, February 11] Lehmann, J. 2007. A handful of carbon. Nature. 447, 143-144

Lehmann, J. and Joseph, S. Biochar for Environmental Management: An Introduction. [Online].2009. Available from: http://www.biochar international.org/images/Biochar_book_Chapter_1.pdf [2014, March 6]

Lehmann, J., Gaunt, J. and Rondon, M. 2006. Bio-char Sequestration in Terrestrial Ecosystem-A Review. Mitigation and Adaptation Strategies for Global Change. 11, 403-427

Lehmann, J., Silva, J. P., Steiner, C., Nehls, T., Zech, W. and Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil. 343-357.

Peng, X., Ye, L. L., Wang, C. H., Zhou, H. and Sun, B. 2011. Temperature- and duration dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research. 112, 159-166

Sohi, S., Lopez-Capel, E., Krull, E., Bol, R. Biochar, climate change and soil: A review to guide future research. [Online]. 2009. Available from : http://www.csiro.au/files/files/poei.pdf [2012, April 22]

UNCCD. Use of biochar (charcoal) to replenish soil carbon pools, restore soil fertility and sequester CO_{2}. [Online]. 2008. Available from: http://www.biorefinery.uga.edu/docs UNCCD\%20 Support\%20of20Biochar\%20.pdf [2012, February 12]

Xu, R., Ferrante, L., Hall, K., Briens, C.and Berruti,F. 2011. Thermal self-sustainability of biochar production by pyrolysis. Journal of Analytical and Applied Pyrolysis. 91, 55-66

สิริกานดาวัชราไทย. 2551. การศึกษาสมดุลคาร์บอนและการกักเก็บคาร์บอนในดินของสบู่ดำที่ปลูกในดินเหนียวและ ดินร่วนปนทราย.วิทยานิพนธ์ปริญญามหาบัณฑิต, สาขาเทคโนโลยีและการจัดการสิ่งแวดล้อมภาควิชาวิทยาศาสตร์ สิ่งแวดล้อมคณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

บรรณานุกรม

ทวีวงศ์ ศรีบุรี, 2556. รายงานฉบับสมบูรณ์ ของโครงการวิจัยต่อเนื่อง 3 ปี. โครงการนำร่องการประเมินวัฏจักรชีวิตของ การปล่อยและกักเก็บก๊าซเรือนกระจกของโครงการพัฒนาอย่างยั่งยืนในพื้นที่ศูนย์ศึกษาการพัฒนาห้วยทรายอันเนื่อง มาจากพระราชดำริ จังหวัดเพชรบุรี (CC294I). โครงการมหาวิทยาลัยวิจัยแห่งชาติ สำนักงานการอุดมศึกษา

สำนักงานกองทุนสนับสนุนงานวิจัย.ประเด็นท้าทายข้อเสนอเชิงนโยบายและการเจรจาของไทยเรื่องการเปลี่ยนแปลง สภาพภูมิอากาศโลก. [ออนไลน์]. 2553. แหล่งที่มา: http://measwatch. org/book/7[10 มกราคม 2555]

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. 2011. Biochar effects on soil biota' A review. Soil Biology and Biochemistry. 43, 1812-1836

Sohi, S., Krull, E., Lopez-Capel, E.,Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy. 105, 47-82.

