มลพิษจากกลิ่น... เรื่องร้องเรียนอันดับ า ของประเทศไทย

คร.สิรินารี เงินเจริญ *

บทน้ำ

กลิ่นเป็นหนึ่งในการรับรู้จากประสาทสัมผัสของมนุษย์ที่มีความสำคัญ เมื่อมนุษย์ได้รับกลิ่นย่อมบ่งชื่ ได้ว่าในสภาวะแวดล้อมนั้นมีโมเลกุลของสารที่สามารถส่งกลิ่นได้เจือปนอยู่ในอากาศ ถึงแม้ว่ากลิ่นไม่มี รูปลักษณ์และไม่สามารถจับต้องได้ แต่มนุษย์สามารถรับรู้กลิ่นได้จากเซลล์ประสาทรับกลิ่น (olfactory receptorcell) ในโพรงจมูก ซึ่งจะส่งสัญญาณไปยังสมองส่วนซีรีบรัม (cerebrum) (รูปภาพที่ 1) แล้วแปล ผลของกลิ่นนั้นว่าเป็นกลิ่นแบบใด เป็นกลิ่นที่มีความน่าพึงพอใจ (aroma) เช่น กลิ่นจากน้ำมันหอมระเหย กลิ่นจากดอกไม้ ซึ่งจะมีผลดีต่อร่างกายและจิตใจของมนุษย์ หรือเป็นกลิ่นที่น่ารังเกียจไม่พึงประสงค์ (odor; malodor) เช่น กลิ่นจากกองขยะและสิ่งปฏิกูล กลิ่นจากน้ำเสีย กลิ่นจากควันจากท่อไอเสียของรถยนต์ หรือ แม้กระทั่งกลิ่นจากธรรมชาติบางอย่าง เช่น กลิ่นจากสาหร่ายในน้ำทะเลที่มีปริมาณมากเกินไปก็ส่งกลิ่นเหม็น เป็นที่น่ารำคาญได้ เรียกปัญหาจากกลิ่นที่ให้ผลเชิงลบอันมีผลทำให้มนุษย์เดือดร้อนหรือรำคาญนั้นว่า มลพิษ จากกลิ่น (Odor pollution)

รูปภาพที่ 1 การรับรู้กลิ่นของมนุษย์ ที่มา : Highlands School of Natural Healing, 2016

^{*} มหาวิทยาลัยบูรพา วิทยาเขตสระแก้ว

กลิ่นในสิ่งแวดล้อม

กลิ่นมีที่มาจากสารอินทรีย์ (Volatile organics) หรือสารอนินทรีย์ที่ระเหยได้ (Volatile inorganics) สถานะ ของสารประกอบที่ให้กลิ่นเป็นได้ทั้งของแข็งในรูปของผลึก ของเหลว หรือก๊าซ ซึ่งส่วนใหญ่จะมีมวลโมเลกุลอยู่ระหว่าง 30-300 กรัมต่อโมเลกุล (มงคล สีมาวงษ์ และนวพร วิสิฐพงศ์พันธ์, 2558) มักมีหมู่ฟังก์ชันหรือหมู่อะตอมที่แสดงสมบัติ เฉพาะ (functional group) ต่าง ๆ ได้แก่ หมู่ใฮดรอกซิล (-OH) หมู่การ์บอกซิล (-COOH) หมู่การ์บอนิลในอัลดีไฮด์ (-CHO) และคีโตน (-CO-) หมู่อะมิโน (-NH₂) และหมู่ซัลฟ์ไฮดริล (-SH) (Yuwono and Lammer, 2004) ซึ่งกลิ่นอาจเกิดจากโมเลกุลของสสารชนิดเดียวหรือหลายชนิดผสมรวมกัน ส่งผลให้กลิ่นในสิ่งแวดล้อมจึงมีความหลาก หลายสูงมาก อย่างไรก็ตาม เพื่อความเที่ยงตรงต่อการบ่งชี้คุณลักษณะของกลิ่นซึ่งเป็นสมบัติเชิงคุณภาพ (odor characterization; odor quality) นักวิทยาศาสตร์จำแนกประเภทของกลิ่นเป็น 8 ประเภทหลัก (St. Croix Sensory, 2000) (รปภาพที่ 2) ดังนี้

รูปภาพที่ 2 คุณลักษณะของกลิ่น ทีมา: St. Croix Sensory, 2000

คุณลักษณะของกลิ่นอาจเปลี่ยนแปลงได้ตามปัจจัยสำคัญต่าง ๆ (St. Croix Sensory, 2005) ได้แก่ ความเข้มข้น ของกลิ่น (odor concentration) ความรุนแรงของกลิ่น (odor intensity) ความคงตัวของกลิ่น (odor persistence) และคุณสมบัติของกลิ่น (odor character descriptors) อย่างไรก็ตาม หากเป็นภาวะที่กลิ่นเป็นมลพิษแล้ว ในทางวิชาการ มักระบุปัจจัยที่มีความเกี่ยวข้องกับคุณลักษณะของกลิ่นที่เรียกว่า FIDOL ซึ่งประกอบด้วย Frequency คือ ความถี่ของการเกิดกลิ่น Intensity คือ ความเข้มของกลิ่น Duration คือ ระยะเวลาการเกิดกลิ่น Offensiveness; Hedonic tone คือ ความน่ารังเกียจ และ Location คือ ตำแหน่งที่ตั้งของพื้นที่ที่ได้รับกลิ่น (Nicell, 2009)

ทั้งนี้ โดยส่วนใหญ่การรบกวนจากมลพิษของกลิ่นจะแปรผันตามกับปัจจัยข้างต้น แต่มีข้อน่าสังเกตบางประการ ได้แก่ ความถี่ที่ผู้รับกลิ่นได้รับผลกระทบ กล่าวคือ ไม่ว่ากลิ่นจะเกิดขึ้นด้วยความถี่น้อยหรือมากก็สร้างมลพิษได้ โดยการรบกวนจากกลิ่นอาจเกิดขึ้นเมื่อมีการแพร่กระจายของกลิ่นที่ความเข้มต่ำถึงสูงที่เกิดขึ้นแบบฉับพลัน (acute exposure) หรือเป็นภาวะการแพร่กระจายของกลิ่นที่มีความเข้มต่ำแต่เกิดขึ้นแบบซ้ำ ๆ (chronic exposure) ก็ได้ (Griffiths, 2014) ความถี่ของกลิ่นจะเพิ่มขึ้นได้ในพื้นที่ใต้ลม และพื้นที่ซึ่งมีเสถียรภาพของอากาศสูง ในบางกรณี พบว่าเมื่อสารประกอบต้นกำเนิดกลิ่นเพิ่มขึ้น กลิ่นอาจเปลี่ยนแปลงได้ เช่น เพนเทน (Pentane) 1 ส่วนในล้านส่วน (ppm) มีกลิ่นคล้ายถั่ว (beany) แต่เมื่อความเข้มข้นเพิ่มขึ้นเป็น 10–500 ppm จะมีกลิ่นคล้ายเหงื่อ (sweaty) และ จะมีกลิ่นคล้ายมูลสัตว์หรือกลิ่นยุ้งฉาง (manure/barnyard) เมื่อความเข้มข้นมากกว่า 500 ppm (Vara–Ubol et al., 2004) เป็นต้น

นอกจากปัจจัยดังกล่าวข้างต้นแล้วความรุนแรงของมลพิษจากกลิ่นยังขึ้นอยู่กับสภาพภูมิประเทศ ตลอดจนมนุษย์ ผู้รับกลิ่นด้วย ซึ่งมีข้อมูลระบุว่า มนุษย์ราวร้อยละ 98 เท่านั้นที่สามารถรับรู้กลิ่นได้ โดยที่เหลืออีกร้อยละ 2 มีจมูกที่บอดกลิ่น (สุทัศน์ ยกส้าน, ม.ป.ป.) ซึ่งในกลุ่มของมนุษย์ที่สามารถรับรู้กลิ่นได้ยังมีการรับรู้กลิ่นได้แตกต่างกันไปขึ้นอยู่กับสภาวะ การรับรู้กลิ่นของมนุษย์แต่ละคน การแปรผลและประเมินระดับความเป็นมลพิษของกลิ่นจึงมีความแตกต่างกัน ดังนั้น เพื่อ ให้การอ้างอิงระดับการรับรู้และระดับมลพิษของกลิ่นเป็นไปตามมาตรฐานเดียวกัน นักวิทยาศาสตร์ได้กำหนดค่าที่เกี่ยวข้อง กับระดับการรับรู้กลิ่น ดังนี้ (กาญจนา สวยสม, 2558; Ministry of the Environment& Forests, 2008; Pirutchada Musigapong, 2007)

- 1. Odor detection threshold (ODTหรือ DT) คือ ปริมาณความเข้มข้นต่ำสุดของสารเคมีที่ทำให้เกิดกลิ่น ที่มนุษย์สามารถรับรู้ได้ โดยค่า ODT ของกลิ่นเป็นค่าที่วิเคราะห์จากการที่กลุ่มตัวอย่างของผู้ทดสอบประมาณกึ่งหนึ่ง หรือร้อยละ 50 ของจำนวนประชากรทั้งหมดมีการตอบสนองของประสาทรับกลิ่นสามารถรับรู้กลิ่นได้ ค่าความเข้มข้นของกลิ่น มีค่าระหว่าง 11–20 Odor unit (OU/m³; OU)
- 2. Recognition threshold (RT) คือ ระดับค่าความเข้มข้นต่ำสุดที่ผู้รับกลิ่นกึ่งหนึ่ง หรือร้อยละ 50 ของกลุ่ม ตัวอย่างประมวลผลจากความรู้หรือประสบการณ์ของผู้รับกลิ่นนั้นแล้วสามารถระบุชนิดของกลิ่นที่ได้รับรู้ได้ ระดับค่าความ เข้มข้นนี้ ส่วนมากมีค่าความเข้มข้นของกลิ่นในระดับ 21–30 OU
- 3. Annoyance threshold (AT) คือ ระดับค่าความเข้มข้นของกลิ่นที่ทำให้มนุษย์เกิดความรำคาญ ความเข้มข้น ของกลิ่นที่สร้างผลกระทบนี้มักมีความเข้มข้น 31-40 OU

อย่างไรก็ตามได้มีผู้รวบรวมและรายงานข้อมูลคุณลักษณะของกลิ่น หรือคุณภาพของกลิ่น (Brattoli et al., 2011) ที่จำเพาะกับชนิดของสารประกอบต้นกำเนิดกลิ่นเพื่อระบุว่ากลิ่นที่รับรู้ได้นั้น คือ กลิ่นใด ตลอดจนระดับค่า Threshold ของมนุษย์ไว้ ตัวอย่างแสดงได้ดังตารางที่ 2

ตารางที่ 2 คุณลักษณะและระดับการรับรู้ของกลิ่น

Compound name	Odor threshold (ppm v/v)		Odor description	Recognition:	
	Detection	Recognition		uctection ratio	
Acetaldehyde	0.067	0.21	Pungent, fruity	3.1	
Allyl mercaptan	0.0001	0.0015	Disagreeable, garlic	15	
Ammonia	17	37	Pungent, irritating	2.2	
Benzyl mercaptan	0.0002	0.0026	Unpleasant, strong	13	
n-Butyl amine	0.08	1.8	Sour, ammonia	22.5	
Chlorine	0.08	0.31	Pungent, suffocating	3.9	
Di-isopropyl amine	0.13	0.38	Fishy	2.9	
Dimethyl sulphide	0.001	0.001	Decayed cabbage	1	
Diphenyl sulphide	0.0001	0.0021	Unpleasant	21	
Ethyl amine	0.27	1.7	Ammonia-like	6.3	
Ethyl mercaptan	0.0003	0.001	Decayed cabbage	3.3	
Hydrogen sulphide	0.0005	0.0047	Rotten eggs	9.4	
Methyl mercaptan	0.0005	0.001	Rotten cabbage	2	
Phenyl mercaptan	0.0003	0.0015	Putrid, garlic	5	
Propyl mercaptan	0.0005	0.02	Unpleasant	40	
Pyridine	0.66	0.74	Pungent, irritating	1.1	
Skatole	0.001	0.05	Faecal, nauseating	50	
Sulphur dioxide	2.7	4.4	Pungent, irritating	1.6	

ที่มา : WEF อ้างถึงใน Environment Agency, 2007

ทั้งนี้ ระดับค่า Threshold ที่ระบุดังตารางที่ 2 เป็นค่าเฉลี่ยจากกลุ่มประชากร ซึ่งค่า Threshold ในแต่ละคน ไม่จำเป็นต้องเท่ากัน ขึ้นอยู่กับปัจจัยอื่น ๆ เช่น เพศ โดยเพศหญิงจะรับรู้กลิ่นได้ดีกว่าเพศชาย (Iowa State University, 2004) ความสามารถในการรับรู้ ความเคยชินกลิ่น ภาวะการเจ็บป่วย ระดับฮอร์โมนในร่างกาย รวมไปถึงพฤติกรรมการ สบบหรี่ด้วย

มลพิษจากกลิ่น

ความแตกต่างของแหล่งกำเนิด ชนิดของกลิ่น และมนุษย์ผู้รับกลิ่น ส่งผลให้กลิ่นบางชนิดที่เป็นมลพิษต่อบุคคล หนึ่งอาจไม่ใช่ปัญหามลพิษทางกลิ่นของอีกบุคคลหนึ่ง ถึงกระนั้นปัญหามลพิษทางกลิ่นก็ยังคงเป็นปัญหาสิ่งแวดล้อมที่สำคัญ ลำดับต้น ๆ ด้วยเหตุผลสำคัญประการหนึ่งซึ่งเกี่ยวข้องกับพื้นที่ เนื่องจากปัญหามลพิษทางกลิ่นที่เกิดขึ้น ส่วนใหญ่การ ร้องเรียนปัญหาจะมาจากผู้พักอาศัยที่ไม่สามารถย้ายที่พำนักเพื่อหลีกเลี่ยงปัญหาจากมลพิษทางกลิ่นได้ รวมทั้งผู้ที่ต้องใช้ชีวิต ประจำวันในบริเวณที่ได้รับกลิ่นเป็นระยะเวลานาน เช่น นักเรียน นักศึกษาที่จำเป็นต้องอยู่ในสถานศึกษานั้น ๆ ดังนั้น พื้นที่จึงเป็นสาเหตุที่มีผลต่อการร้องเรียนปัญหามลพิษทางกลิ่นที่สำคัญมาก ดังปรากฏผลชัดเจนจากสถิติการร้องเรียนของ ประเทศไทยในปี พ.ศ. 2553-2558 ซึ่งมีการร้องเรียนในแต่ละปีประมาณร้อยละ 40 ถึงร้อยละ 44 (กรมควบคุมมลพิษ, 2558) โดยมีพื้นที่ประสบปัญหากลิ่นเหม็นที่ได้รับการร้องเรียนจำแนกเป็นรายจังหวัด แสดงข้อมูลได้ดังตารางที่ 3

ตารางที่ 3 สถิติการร้องเรียนปัญหามลพิษทางกลิ่นที่กรมควบคุมมลพิษรับแจ้ง ปี พ.ศ. 2550-พ.ศ. 2558

ปี	พื้นที่รายจังหวัดที่ร้องเรียนปัญหามลพิษทางกลิ่น ปี พ.ศ. 2550-พ.ศ. 2558					
พ.ศ.	ลำดับที่ 1	ลำดับที่ 2	ลำดับที่ 3	ถ้ำดับที่ 4	ลำดับที่ 5	
2550	กรุงเทพมหานคร (182 เรื่อง)	สมุทรปราการ (31 เรื่อง)	สมุทรสาคร (18 เรื่อง)	นครปฐม (15 เรื่อง)	นนทบุรี (13 เรื่อง)	
2551	กรุงเทพมหานคร (207 เรื่อง)	สมุทรปราการ (35 เรื่อง)	สมุทรสาคร (22 เรื่อง)	นครปฐม (20 เรื่อง)	นนทบุรี (17 เรื่อง)	
2552	กรุงเทพมหานคร (122 เรื่อง)	สมุทรปราการ (24 เรื่อง)	สมุทรสาคร (12 เรื่อง)	ฉะเชิงเทรา และนนทบุรี (11 เรื่อง)	นครปฐม และปทุมธานี (10 เรื่อง)	
2553	กรุงเทพมหานคร (167 เรื่อง)	สมุทรปราการ (22 เรื่อง)	สมุทรสาคร (15 เรื่อง)	นครปฐม (12 เรื่อง)	ชลบุรี (11 เรื่อง)	
2554	กรุงเทพมหานคร (139 เรื่อง)	นครปฐม (23 เรื่อง)	สมุทรปราการ และสมุทรสาคร (20 เรื่อง)	นนทบุรี (13 เรื่อง)	(8 เรื่อง)	
2555	กรุงเทพมหานคร (144 เรื่อง)	สมุทรปราการ (17 เรื่อง)	ปทุมธานี (16 เรื่อง)	นครปฐม (15 เรื่อง)	นนทบุรี และสมุทรสาคร (11 เรื่อง)	
2556	กรุงเทพมหานคร (123 เรื่อง)	สมุทรปราการ (24 เรื่อง)	นครปฐม (20 เรื่อง)	นนทบุรี (14 เรื่อง)	สมุทรสาคร (13 เรื่อง)	
2557	กรุงเทพมหานคร (173 เรื่อง)	สมุทรปราการ (28 เรื่อง)	ปทุมธานี (20 เรื่อง)	นครปฐม (18 เรื่อง)	นนทบุรี และสมุทรสาคร (15 เรื่อง)	
2558	กรุงเทพมหานคร (121 เรื่อง)	สมุทรปราการ (13 เรื่อง)	ฉะเชิงเทรา (10 เรื่อง)	ปทุมธานี และสมุทรสาคร (9 เรื่อง)	เชียงใหม่ นครปฐม และระยอง (8 เรื่อง)	

ที่มา : ดัดแปลงจาก กรมควบคุมมลพิษ, 2558

จังหวัดที่มีปัญหาเรื่องมลพิษทางกลิ่นเป็นลำดับแรก ได้แก่ กรุงเทพมหานคร รองลงมาพบว่า ส่วนใหญ่จะเป็น พื้นที่แถบปริมณฑล กลิ่นที่เป็นเหตุสำคัญที่ทำให้เกิดมลพิษทางอากาศ ได้แก่ สารอินทรีย์ระเหยง่าย (VOCs) และ มลสารอันตรายต่าง ๆ (HAPs) เช่น สารองค์ประกอบในสี ตัวทำละลาย น้ำมัน (กาญจนา สวยสม, 2558) อย่างไรก็ตาม เมื่อวิเคราะห์ข้อมูลทุติยภูมิที่เกี่ยวข้องกับเรื่องร้องเรียนปัญหามลพิษทางกลิ่นแล้ว สามารถจำแนกสาเหตุที่ทำให้เกิดปัญหา มลพิษทางกลิ่นดังกล่าวได้ ดังนี้

1. กระบวนการผลิตของภาคอุตสาหกรรม โดยในทุกขั้นตอนการผลิตตั้งแต่การเตรียมสารเคมีหรือวัตถุดิบเพื่อ การผลิต กระบวนการผลิต และการจัดการกากอุตสาหกรรมต่าง ๆ อาจเป็นที่มาของปัญหากลิ่นเหม็นทั้งสิ้น ปัญหาดังกล่าว พบทั้งในอุตสาหกรรมการผลิตขนาดใหญ่ อาทิ โรงงานในกลุ่มปิโตรเคมี โรงงานผลิตภัณฑ์เกี่ยวกับกระดาษ ฯลฯ ตลอดจนอุตสาหกรรมขนาดย่อมก็เป็นสาเหตุปัญหากลิ่นเหม็นได้ เช่น โรงงานประกอบเฟอร์นิเจอร์ โรงงานผลิตกระดาษ สำหรับใหว้เจ้า โรงงานทำน้ำแข็ง และโรงงานผลิตอาหารสำเร็จรูป เป็นต้น

- 2. กระบวนการผลิตของภาคเกษตรกรรม เช่น การเลี้ยงสัตว์ การฉีดพ่นสารเคมี การล้างพื้นที่ใช้สอยทางการ เกษตร ฯลฯ เช่น ฟาร์มเลี้ยงสัตว์ โรงฆ่าสัตว์ โรงงานแปรรูปกระดูกสัตว์ ลานตากวัตถุดิบจากการเกษตร และการเน่าเสีย ของพืชผลทางการเกษตรจำนวนมาก
- 3. กิจกรรมในชุมชน เช่น การทิ้งขยะ การเผาขยะ การเผาสพ การเผาวัชพืช แม้กระทั่งการประกอบอาหาร หากมีจำนวนมาก เช่น การย่างปลาก็พบว่าเป็นสาเหตุของปัญหามลพิษทางกลิ่นเช่นกัน
- 4. การคมนาคมขนส่ง ซึ่งเกิดจากกระบวนการเผาไหม้ของเชื้อเพลิงในยานพาหนะ แม้จะไม่มีกลิ่นรุนแรง แต่เกิดปัญหาได้หากการระบายอากาศบนถนนมีไม่เพียงพอ หรือมีเสถียรภาพทางอากาศมาก
- ภัยธรรมชาติ เช่น ภัยแล้งที่ทำให้ระดับน้ำของน้ำผิวดินต่ำ อัตราการระบายน้ำน้อย จึงเกิดน้ำเน่าและส่งกลิ่น เน่าเหม็น หรือภาวะฝนตกหนักที่อาจเป็นปัญหาต่อระบบบำบัดน้ำเสียจนเกิดการลักลอบปล่อยน้ำเสียออกสู่สิ่งแวคล้อม ้นอกจากนี้ สภาพอากาศที่ร้อนจัดหรือมีการเปลี่ยนแปลงสภาพอากาศหลังจากมีฝนตกหนักทำให้สาหร่ายเติบโตจำนวนมาก และตายทับถมกันจนมีกลิ่นแน่าเหม็น รวมถึงการเน่าเหม็นจากสิ่งมีชีวิตในน้ำที่ตายด้วย
- 6. อุบัติเหตุจากการระเบิดภายในโรงงาน การรั่วไหลของบ่อบ่มก๊าซ การจัดเก็บสารเกมีที่ไม่เหมาะสมอาจทำให้ ้มีสารประกอบต้นกำเนิดกลิ่นเหม็นแพร่กระจายในสิ่งแวดล้อมจนเป็นเหตุเดือดร้อนรำคาญทั้งยังอาจมีผลต่อสุขภาพด้วย
- 7. การลักลอบทิ้งขยะ โดยเฉพาะอย่างยิ่งขยะอุตสาหกรรม ซึ่งผู้กระทำผิดมักจะนำขยะดังกล่าวใส่ถุง ถัง บางกรณีพบว่าใช้รถยนต์บรรทุกสิ่งปฏิกูลหรือรถดูดส้วมไปลอบทิ้งในพื้นที่สาธารณะต่าง ๆ อาทิ ในพื้นที่ป่า พื้นที่รกร้าง บ่อลูกรัง ตลอดจนริมถนน ซึ่งการลักลอบทิ้งที่เกิดขึ้นจะเป็นปัญหามลพิษทางกลิ่นเมื่อบรรจุภัณฑ์ที่ใช้เสื่อมสภาพหรือฝนตกแล้ว ทำให้สารประกอบที่ทำให้เกิดกลิ่นรั่วไหลสู่ภายนอก

ด้วยหลายสาเหตุของมลพิษทางกลิ่นดังกล่าวข้างต้น เรื่องร้องเรียนเกี่ยวกับมลพิษทางกลิ่นจึงเป็นปัญหาที่ควบคุม ได้ยากและยังคงพบมากในประเทศไทย โดยเป็นปัญหาสำคัญที่ไม่อาจเพิกเฉยได้ ภาคส่วนต่าง ๆ จึงควรร่วมมือกันในหลาย แนวทาง ทั้งการพัฒนาวิธีและเครื่องมือการตรวจวัดให้ทันสมัยมีประสิทธิภาพ การจัดตั้งทีมเฉพาะกิจในการจัดการปัญหา ้ เรื่องกลิ่น ทั้งนี้ ภาครัฐโดยการกำกับของกระทรวงอุตสาหกรรมและกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมได้กำหนด ค่ามาตรฐานกลิ่นเพื่อควบคุมและป้องกันปัญหามลพิษจากกลิ่นที่เกิดขึ้น ดังข้อมูลมาตรฐานค่าความเข้มกลิ่นจากโรงงาน พ.ศ. 2548 (ตารางที่ 4) ซึ่งกำหนดให้มีการตรวจวัดค่าความเข้มกลิ่นทั้งบริเวณรั้วหรือขอบเขตภายในโรงงาน อีกทั้งยัง ออกประกาศกำหนดมาตรฐานค่าความเข้มกลิ่นของอากาศเสียที่ปล่อยทิ้งจากสถานที่เลี้ยงสัตว์ เมื่อ พ.ศ. 2556 ให้ตรวจ วัดค่าความเข้มกลิ่นด้วยการคม (sensory test) ค่าความเข้มกลิ่นนั้นต้องไม่เกิน 30 OU (กระทรวงทรัพยากรธรรมชาติ และสิ่งแวดล้อม, 2556)

ตารางที่ 4 มาตรฐานค่าความเข้มกลิ่นจากโรงงาน

ที่ตั้งโรงงาน	ค่าความเข้มกลิ่นที่รั้ว หรือขอบเขตภายในโรงงาน	ค่าความเข้มกลิ่น ที่ปล่องระบายอากาศของโรงงาน	
เขตอุตสาหกรรม	30	1,000	
นอกเขตอุตสาหกรรม	15	300	

ที่มา: กระทรวงอุตสาหกรรม, 2548

ทั้งนี้ ข้อกำหนดและแนวทางในการจัดการปัญหามลพิษทางกลิ่นในประเทศไทยยังคงอยู่ในระหว่างดำเนินการ รวมทั้งการทบทวนแนวทางและข้อกำหนดต่าง ๆ เพื่อแสวงหาแนวทางในการแก้ไขปัญหาเพิ่มขึ้นอีกหลายแนวทาง ด้วยความมุ่งหมายให้ปัญหามลพิษทางกลิ่นไม่ใช่ปัญหาสิ่งแวดล้อมที่เป็นเรื่องร้องเรียนอันดับ 1 และไม่ควรเป็นเรื่อง ร้องเรียนอันดับใด ๆ เพื่อให้ทุกคนในวันนี้และในอนาคตสามารถ 'หายใจได้อย่างมีความสุขและปลอดภัย' ในทุกพื้นที่ บนแผ่นดินไทยแห่งนี้

เอกสารอ้างอิงและบรรณานุกรม

ภาษาไทย

- กรมควบคุมมลพิษ. 2558. **สถิติการร้องเรียนปัญหามลพิษ ปี 2558**. [ออนไลน์]. แหล่งที่มา: http://www.pcd.go.th/info_serv/pol2_stat2558.html [10 มิถุนายน 2559]
- กระทรวงทรัพยากรธรรมชาติและสิ่งแวคล้อม. 2556. ประกาศกระทรวงทรัพยากรธรรมชาติและสิ่งแวคล้อม เรื่อง กำหนด มาตรฐานค่าความเข้มกลิ่นของอากาศเสียที่ปล่อยทิ้งจากสถานที่เลี้ยงสัตว์. [ออนไลน์]. แหล่งที่มา: http://www.mnre.go.th/ewt_dl_link.php?nid=6034 [17 มิถุนายน 2559]
- กระทรวงอุตสาหกรรม. 2548. กฏกระทรวง กำหนดมาตรฐานและวิธีการตรวจสอบกลิ่นในอากาศจากโรงงาน พ.ศ. 2548 [ออนไลน์]. แหล่งที่มา: http://203.155.220.230/bmainfo/law/021/ standardsmell_2548.pdf [17 มิถุนายน 2559]
- กาญจนา สวยสม. 2558. **เทคนิคการเก็บตัวอย่างกลิ่นและการตรวจวิเคราะห์กลิ่น**. [ออนไลน์]. แหล่งที่มา: http://env.anamai.moph.go.th/download/download/meeting/2558/27_300158/300158.pdf [12 มิถุนายน 2559]
- มงคล สีมาวงษ์ และนวพร วิสิฐพงศ์พันธ์. 2558. ระบบตรวจจับกลิ่นและแอปพลิเคชั่นติดตามกลิ่นบนโทรศัพท์สมาร์ทโฟน [ออนไลน์]. แหล่งที่มา: http://202.44.34.144/nccitedoc/admin/nccit_files/NCCIT-20151210 101205.pdf [10 มิถุนายน 2559]
- สุทัศน์ ยกส้าน. ม.ป.ป. **ฆานวิทยา**: **วิทยาศาสตร์ของกลิ่น**. [ออนไลน์]. แหล่งที่มา: http://dl.kids-d.org/bitstream/ handle/123456789/HASH83f52fbd9de5d246ee4b75/doc.pdf?sequence=2[13 มิถุนายน 2559]

ภาษาอังกฤษ

- Brattoli, M., Gennaro, G.D, Pinto, V.D., Loiotile, A.D., Lovascio, S., and Penza, M. 2011. Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors 11: 5290-5322.
- Environment Agency. 2007. **Review of odour character and thresholds**. [Online]. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/290981/scho0307bmkt-e-e.pdf. [2016, June 15]
- Griffiths, K.D. 2014. Disentangling the frequency and intensity dimensions of nuisance odour, and implications for jurisdictional odour impact criteria. Atmospheric Environment 90: 125-132.
- Highlands School of Natural Healing. 2016. **How olfaction works**. [Online]. Available from: http://highlandsnaturalhealing.com/blog/inhaling-essential-oils/ [2016, June 14]

- Iowa State University. 2004. The Science of Smell Part 1: Odor perception and physiological response.

 [Online]. Available from: https://store.extension.iastate.edu/Product/pm1963a-pdf
 [2016, June 15]
- McGinley, C.M., McGinley, M.A., and McGinley, D.L. 2000. "Odor Basics", Understanding and Using Odor Testing. [Online]. Available from: http://www.fivesenses.com/Documents/Library/33%20%20Odor%20Basics.pdf [2016, June 16]
- Ministry of the Environment and Forests, Govt. of India. 2008. **Guidelines on Odour Pollution and Its control**. [Online]. Available from: http://cpcb.nic.in/divisionsofheadoffice/pci2/package_odourreport_2.12.08.pdf [2016, August 11]
- MusigapongP. 2007. A Study of Concentration of Mixture Odorants for the Determination Odor Threshold and Annoyance Threshold, Using Static Olfactometry with a Panel of Human Assessors Being the Sensor. Master's Thesis. Faculty of Graduates Studies, Mahidol University.
- Nicell, J.A. 2009. Assessment and regulation of odour impacts. Atmospheric Environment 43: 196-206.
- St. Croix Sensory. 2005. A review of the science and technology of odor measurement. [Online]. Available from: http://www.iowadnr.gov/Portals/idnr/uploads/air/environment/afo/odor_measurement.pdf[2016, June 13]
- Vara-Ubol, S., Chambers, E., and Chambers, D.H. 2004. Sensory characteristics of chemical compounds potentially associated with beany aroma in foods. **Journal of Sensory Studies** 19: 15–26.
- Yuwono, A.S., and Lammers, P.S. 2004. Odor Pollution in the Environment and the Detection Instrumentation.

 Agricultural Engineering International: CIGR Journal 18: 546–579.